184 resultados para Sensibilité au contraste temporel


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pd-Au/C and Pd-Ag/C were found to have a unique characteristic of evolving high-quality hydrogen dramatically and steadily from the catalyzed decomposition of liquid formic acid at convenient temperature, and further this was improved by the addition of CeO2(H2O)(x).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Au-Pt bimetallic nanoparticles (NPs) were synthesized by reducing the mixture of HAuCl4 and K2PtCl6 with ethanol in the presence of cinnamic acid (C6H5CHCHCO2H, CA) through a thermal process. It was found that the isolated NPs could gradually self-assemble into chain-like structures, ultimately to 3-dimensional network nanostructures by adjusting the molar ratio of CA to K2PtCl6. Energy-dispersive Spectroscopy, X-ray photoelectron spectroscopy and X-ray diffraction was used to confirm the formation of Au-Pt bimetallic nanostructures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

采用电化学方法制备了溶液中稳定的Au隧道结,对制备过程中量子线到隧道结的整个实验过程进行了研究.结果表明,由于存在机械应力,直接腐蚀Au丝很难精细控制电化学过程,导致无法直接制得隧道结.通过向溶液中加入氯金酸进一步电化学沉积/腐蚀成功地解决了此问题,但溶液中Au离子的自沉积作用导致所形成的隧道结不稳定.针对这一问题,对实验过程进行了改进,采用将腐蚀直接制得的电极对在盐酸溶液中定向电沉积的办法制备得到了溶液中稳定的Au隧道结.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a hollow Au/Pd core/shell nanostructure with a raspberry surface was developed for methanol, ethanol, and formic acid oxidation in alkaline media. The results showed that it possessed better electrocatalyst performance than hollow Au nanospheres or Pd nanoparticles. The nanostructure was fabricated via a two-step method. Hollow Au nanospheres were first synthesized by a galvanic replacement reaction, and then they were coated with a layer of Pd grains. Several characterizations such as transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS) were used to investigate the prepared nanostructures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multiwalled carbon nanotubes@SnO2-Au (MWCNTs@SnO2-Au) composite was synthesized by a chemical route. The structure and composition of the MWCNTs@SnO2-Au composite were confirmed by means of transmission electron microscopy, X-ray photoelectron and Raman spectroscopy. Due to the good electrocatalytic property of MWCNTs@SnO2-Au composite, a glucose biosensor was constructed by absorbing glucose oxidase (GOD) on the hybrid material. A direct electron transfer process is observed at the MWCNTs@SnO2-Au/GOD-modified glassy carbon electrode. The glucose biosensor has a linear range from 4.0 to 24.0 mM, which is suitable for glucose determination by real samples. It should be worthwhile noting that, from 4.0 to 12.0 mM, the cathodic peak currents of the biosensor decrease linearly with increasing the glucose concentrations in human blood. Meanwhile, the resulting biosensor can also prevent the effects of interfering species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemically converted graphene (CCG)/3,4,9,10-perylene tetracarboxylic acid (PTCA)/Au-ionic liquid (Au-IL) composites (CCG/PTCA/Au-IL) have been prepared by a chemical route that involves functionalization of CCG with PTCA followed by deposition of Au-IL. Transmission electron microscopy revealed well-distributed Au with a high surface coverage. The identity of the hybrid material was confirmed through X-ray diffraction and X-ray photoelectron spectroscopy. The CCG/PTCA/Au-IL composites exhibited good electrocatalytic behavior toward oxygen reduction. The results indicate that modification of CCG with Au-IL could play an important role in increasing the electrocatalytic activity of CCG.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a sensitively amplified electrochemical aptasensor using adenosine triphosphate (ATP) as a model. ATP is a multifunctional nucleotide thatis most important as a "molecular currency" of intracellular energy transfer. In the sensing process, duplexes consisting of partly complementary strand (PCS1), ATP aptamer (ABA) and another partly complementary strand (PCS2) were immobilized onto Au electrode through the 5'-HS on the PCS1. Meanwhile, PCS2 was grafted with the Au nanoparticles (AuNPs) to amplify the detection signals. In the absence of ATP, probe methylene blue (MB) bound to the DNA duplexes and also bound to guanine bases specifically to produce a strong differential pulse voltammetry (DPV) signal. But when ATP exists, the ABA-PCS2 or ABA-PCS1 part duplexes might be destroyed, which decreased the amount of MB on the electrode and led to obviously decreased DPV signal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, rapid fabrication of Au nanoparticle (Au NP) films has been simply achieved by alternate adsorption of citrate-stabilized Au NPs and poly(diallyldimethylammonium chloride) with the aid of centrifugal force. In contrast to conventional electrostatic assembly, we carried out the assembly process in a centrifuge with a rotating speed of 4000 rpm, where centrifugal force can be imposed on Au NPs. Scanning electron microscopy and cyclic voltammetry were employed to characterize the assembly procedure and the thus-prepared thin solid films. Our results demonstrate that centrifugal force can promote the assembly of Au NPs and therefore enable the rapid fabrication of functional Au NP films.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we studied the reaction between Au nanoparticles (Au NPs) and [Fe(CN)(6)](3-) by the UV-vis absorption spectroscopy, X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy. The absorption peak of Au NPs disappeared after adding [Fe(CN)(6)](3-) and the XPS data conformed the formation of [Au(CN)(2)](-). The results demonstrated that [Fe(CN)(6)](3-) could induce the dissolution of Au NPs, where the CN- from the dissociation of [Fe(CN)(6)](3-) played an important role.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, we report the effects of the thickness of metal and oxide layers of the Al/WO3/Au interconnecting structure on the electrical and optical characteristics of the and bottom units of the two-unit stacked organic-light-emitting-devices (OLEDs). It is found that light emission performance of the upper unit is sensitive to the transmittance of semitransparent Al/WO3/Au structure, which can be improved by changing the thickness of each layer of the Al/WO3/Au structure. It is important to note that the introduction WO3 between Al and Au significantly enhances the current efficiency of both the upper and bottom units with respect to that of the corresponding Al/Au structure without WO3. In addition, the emission spectra of both the upper and bottom units are narrower than that of the control device due to microcavity effect. Our results indicate that the All WO3/Au interconnecting structure is a good candidate for fabricating independently controllable high efficiency stacked OLEDs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The replacement of coronene monolayer on Au (111) by 6-mercapto-1-hexanol (MHO) was studied by in situ scanning tunneling microscopy (STM) in solutions. It was found that the rate of replacement depends strongly on the concentration of MHO. The replacement finished within a second at a higher concentration of MHO. At a lower concentration, the slow replacement could be followed by in situ STM. The replacement occurred initially near the elbow position of reconstructed Au (111) with the formation of pits in a single or several missing molecules. With the proceeding of replacement, these small pits expanded, and the surrounding coronene molecules were gradually substituted by MHO, which developed into ordered domains within a spatial confined environment. Meanwhile, the reconstruction of Au (111) was lifted. The replacement expanded fast along the reconstruction lines in the domain. For the fast replacement, a (root 3 x root 3) R30 degrees adlattice was observed, while a c(4 x 2) superlattice was observed for the slow replacement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

用循环伏安法(CV)和电化学扫描隧道显微镜(ECSTM)在HClO4溶液中研究了配对碱基腺嘌呤(Adenine,A)与胸腺嘧啶(Thymine,T)在Au(111)电极上的共吸附行为。CV曲线表明,A和T的电化学共吸附行为更接近于A的电化学吸附行为。高分辨STM图像显示,在物理吸附区域碱基A和T分子之间通过氢键作用形成一种不同于单组分的网络结构。根据STM图像提出一个可能的模型,并给出了在Au(111)电极上共吸附时A和T分子之间可能的氢键作用方式。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A high-efficiency nanoelectrocatalyst based on high-density Au/Pt hybrid nanoparticles supported on a silica nanosphere (Au-Pt/SiO2) has been prepared by a facile wet chemical method. Scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy are employed to characterize the obtained Au-Pt/SiO2. It was found that each hybrid nanosphere is composed of high-density small Au/Pt hybrid nanoparticles with rough surfaces. These small Au/Pt hybrid nanoparticles interconnect and form a porous nanostructure, which provides highly accessible activity sites, as required for high electrocatalytic activity. We suggest that the particular morphology of the AuPt/SiO2 may be the reason for the high catalytic activity. Thus, this hybrid nanomaterial may find a potential application in fuel cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this contribution, we for the first time report the synthesis of raspberry-like hierarchical Au/Pt nanoparticle (NP) assembling hollow spheres (RHAHS) with pore structure and complex morphology through one in situ sacrificial template approach without any post-treatment procedure. This method has some clear advantages including simplicity, quickness, high quality, good reproducibility, and no need of a complex post-treatment process (removing templating). Furthermore, the present method could be extended to other metal-based NP assembling hollow spheres. Most importantly, the as-prepared RHAHS exhibited excellent electrocatalytic activity for oxygen reduction reaction (ORR). For instance, the present RHAHS-modified electrode exhibited more positive potential (the half-wave potential at about 0.6 V), higher specific activity, and higher mass activity for ORR than that of commercial platinum black (CPB). Rotating ring-disk electrode (RRDE) voltarnmetry demonstrated that the RHAHS-modified electrode could almost catalyze a four-electron reduction of O-2 to H2O in a 0.5 M air-saturated H2SO4 solution.