194 resultados para Repetition frequency
Resumo:
We develop a swept frequency method for measuring the frequency response of photodetectors; (PDs) based on harmonic analysis. In this technique, a lightwave from a laser source is modulated by a radio-frequency (RF) signal via a Mach-Zehnder LiNbO3 modulator, and detected by a PD under test. The measured second-order harmonic of the RF signal contains information of the frequency responses and nonlinearities of the RF source, modulator, and PD. The frequency response of the PD alone is obtained by deducting the known frequency responses and nonlinearities of the RF source and modulator. Compared with the conventional swept frequency method, the measurement frequency range can be doubled using the proposed method. Experiment results show a good agreement between the measured results and those obtained using other techniques.
Resumo:
A diode-pumped passively mode-locked YVO4/Nd YVO4 composite crystal green laser with a semiconductor saturable absorber mirror (SESAM) and a intracavity frequency-doubling KTP crystal was realized. The maximum average output power of 2.06 W at 532 nm with a repetition rate of 100 MHz was obtained at a pump power of 15 W, corresponding to optical slop efficiency 17.2%. The 532 nm mode-locked pulse width was estimated to be approximately 18-ps.
Resumo:
Metal-semiconductor-metal (MSM) structures were fabricated by RF-plasma-assisted MBE using different buffer layer structures. One type of buffer structure consists of an AlN high-temperature buffer layer (HTBL) and a GaN intermediate temperature buffer layer (ITBL), another buffer structure consists of just a single A IN HTBL. Systematic measurements in the flicker noise and deep level transient Fourier spectroscopy (DLTFS) measurements were used to characterize the defect properties in the films. Both the noise and DLTFS measurements indicate improved properties for devices fabricated with the use of ITBL and is attributed to the relaxation of residue strain in the epitaxial layer during growth process. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
This letter presents a new method for extracting the intrinsic frequency response of a p-i-n photodiode (PD) from the measured frequency response of the PD at different bias voltages. This method is much simpler than the conventional calibration method, since only the measured scattering parameters are required, and there is no need to calibrate the test fixtures and the lightwave source. Experiment shows that the proposed method is as accurate as the calibration method.
Resumo:
Two simple methods for estimating the potential modulation bandwidth of TO packaging technique are presented. The first method is based upon the comparison of the measured frequency responses of the laser diodes and the TO laser modules, and the second is from the equivalent circuit for the test fixture, the TO header, the submount and the bonding wire. It is shown that the TO packaging techniques used in the experiments can potentially achieve a frequency bandwidth of over 10.5 GHz, and the two proposed methods give similar results.
Resumo:
In this paper frequency dependence of small-signal capacitance of p-i-n UV detectors, which were fabricated on GaN grown on sapphire substrate by metalorganic chemical vapor deposition, has been studied. The Schibli-Milnes model was used to analyze the capacitance-frequency characteristics. According to high frequency C-V measurements, the deep level mean concentration is about 2.98 x 10(20) cm(-3). The deep level is caused by the un-ionised Mg dopant. The calculated Mg activation energy is 260 meV and the hole thermal capture cross section of the deep level is about 2.73 x 10(-22) cm(2). The applicability of the Schibli-Milnes model is also discussed when the concentration of deep levels exceeds that of the heavily doped n-side. It is concluded that the analytic expression of the Schibli-Milnes model can still be used to describe the capacitance-frequency characteristics of GaN p-i-n UV detectors in good agreement with experiment. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
A novel silicon-on-insulator thermo-optic variable optical attenuator with isolated grooves based on a multimode interference coupler principle is fabricated by the inductive coupled plasma etching technology. The maximum fibre-to-fibre insertion loss is lower than 2.2 dB, the dynamic attenuation range is from 0 to 30 dB in the wavelength range 1500-1600 nm, and the maximum power consumption is only 140 mW. The response frequency of the fabricated variable optical attenuator is about 30 kHz. Compared to the variable optical attenuator without isolated grooves, the maximum power consumption decreases more than 220 mW, and the response frequency rises are more than 20 kHz.
Resumo:
This paper presents a novel efficient charge pump composed of low Vth metal-oxide-semiconductor (MOS) field effect transistors (FET) in the course of realizing radio frequency (RF) energy AC/DC conversion. The novel structure eliminates those defects caused by typical Schottky-diode charge pumps, which are dependent on specific processes and inconsistent in quality between different product batches. Our analyses indicate that an easy-fabricated, stable and efficient RF energy AC/DC charge pump can be conveniently implemented through reasonably configuring the MOS transistor aspect ratio, and other design parameters such as capacitance, multiplying stages to meet various demands on performance.
Resumo:
This paper proposes a novel phase-locked loop (PLL) frequency synthesizer using single-electron devices (SEDs) and metal-oxide-semiconductor (MOS) field-effect transistors. The PLL frequency synthesizer mainly consists of a single-electron transistor (SET)/MOS hybrid voltage-controlled oscillator circuit, a single-electron (SE) turnstile/MOS hybrid phase-frequency detector (PFD) circuit and a SE turnstile/MOS hybrid frequency divider. The phase-frequency detection and frequency-division functions are realized by manipulating the single electrons. We propose a SPICE model to describe the behavior of the MOSFET-based SE turnstile. The authors simulate the performance of the PILL block circuits and the whole PLL synthesizer. Simulation results indicated that the circuit can well perform the operation of the PLL frequency synthesizer at room temperature. The PILL synthesizer is very compact. The total number of the transistors is less than 50. The power dissipation of the proposed PLL circuit is less than 3 uW. The authors discuss the effect of fabrication tolerance, the effect of background charge and the SE transfer accuracy on the performance of the PLL circuit. A technique to compensate parameter dispersions of SEDs is proposed.
Resumo:
A stabilized and tunable single-longitudinal-mode erbium-doped fiber ring laser has been proposed and experimentally demonstrated. The laser is structured by combining the compound cavity with a fiber Fabry-Perot tunable filter. An injection-locking technique has been used to stabilize the wavelength and output power of the laser. One of the longitudinal modes is stimulated by the injected continuous wave so that this mode is able to win the competition to stabilize the system. A minimum output power of 0.6 dBm and a signal-to-noise ratio of over 43 dB within the tuning range of 1527-1562 nm can be achieved with the proposed technique. A wavelength variation of less than 0.01 nm, a power fluctuation of less than 0.02 dB, and a short-term linewidth of about 1.4 kHz have also been obtained.
Resumo:
Three-terminal ballistic junctions (TBJs) are fabricated from a high-mobility InP/In0.75Ga0.25As heterostructure by electron-beam lithography. The voltage output from the central branch is measured as a function of the voltages applied to the left and right branches of the TBJs. The measurements show that the TBJs possess an intrinsic nonlinearity. Based on this nonlinearity, a novel room-temperature functional frequency mixer and phase detector are realized. The TBJ frequency mixer and phase detector are expected to have advantages over traditional circuits in terms of simple structure, small size and high speed, and can be used as a new type of building block in nanoelectronics.
Resumo:
Coupling and packaging have become decisive factors in the final performance and cost of high-frequency optoelectronic devices. Here, we report the design and successful fabrication of a silicon bench that integrates a V-groove and high-frequency coplanar waveguide (CPW) on the same high-resistivity silicon wafer as an effective optoelectronic packaging solution.
Resumo:
We propose and demonstrate measurement of the frequency response of an electroabsorption (EA) modulator using an extended small-signal power measuring technique. In this technique, the modulator is driven by a microwave carrier amplitude modulated by a low-frequency signal, and the modulator frequency response is obtained without the need of a high-speed photodetector. Based upon the nonlinear characteristics of the EA modulator and the underlying principle of the present method, equations have been derived. A measurement scheme using a network analyzer and a low-speed photodetector has been proposed and constructed, and the experimental results confirm that our proposed method is as accurate as the swept-frequency measurement using a network analyzer directly.
Resumo:
A simple method for estimating the frequency responses of directly modulated lasers from optical spectra is presented. The frequency-modulation index and intensity-modulation index of a distributed feedback laser can be obtained through the optical spectrum analyses. The main advantage is that the measurement setup is very simple. Only a microwave source and an optical spectrum analyser are needed and there is no need to use a calibrated broadband photodetector. Experiment shows that the proposed method is as accurate as the swept frequency method using a network analyzer and is applicable to a wide range of modulation powers.
Resumo:
Sb-doped Zn1-xMgxO films were grown on c-plane sapphire substrates by radio-frequency magnetron sputtering. The p-type conduction of the films (0.05 <= x <= 0.13) was confirmed by Hall measurements, revealing a hole concentration of 10(15)-10(16) cm(-3) and a mobility of 0.6-4.5 cm(2)/V s. A p-n homojunction comprising an undoped ZnO layer and an Sb-doped Zn0.95Mg0.05O layer shows a typical rectifying characteristic. Sb-doped p-type Zn1-xMgxO films also exhibit a changeable wider band gap as a function of x, implying that they can probably be used for fabrication of ZnO-based quantum wells and ultraviolet optoelectronic devices. (c) 2006 American Institute of Physics.