224 resultados para PERFORMANCES
Resumo:
This paper reports the impact of a wide bandgap p-type hydrogenated nanocrystalline silicon (nc-Si:H) on the performances of hydrogenated amorphous silicon (a-Si:H) based solar cells. The player consists of nanometer-sized Si crystallites and has a wide effective bandgap determined mainly by the quantum size-confinement effect (QSE). By incorporation of this p-layer into the devices we have obtained high performances of a-Si:H top solar cells with V-infinity=1.045 V and FF=70.3 %, and much improved mid and bottom a-SiGe:H cells, deposited on stainless steel (SS) substrate. The effects of the band-edge mismatch at the p/i-interface on the I-V characteristics of the solar cells arc discussed on the bases of the density-functional approach and the AMPS model.
Resumo:
The investigation of AlxGa1-xAs/GaAs solar cells is carried out by means of both metalorganic chemical vapor deposition (MOCVD) and liquid-phase epitaxial (LPE) technique. The measurements of illuminated I-V characteristics, dark I-V characteristics and quantum efficiencies were performed for the GaAs solar cells made in author's laboratory. The measuring results revealed that the quality of materials in GaAs solar cell's structures is the key factor for getting high-efficient GaAs solar cells, but the effect of post-growth technology on the performances of GaAs solar cells is also very strong. The 21.95% (AM0, 2 x 2cm(2), 25 degreesC) high conversion efficiency in a typical GaAs solar cell has been achieved owing to improving the quality of materials as well as optimizing the post-growth technology of devices. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
This paper describes the effect of electron irradiation and thermal annealing on LPE AlGaAs/GaAs heterojunction solar cells with various p/n junction depths. The electron irradiation experiments were performed with energy of 3 MeV, fluences ranging from 1 x 10(14) to 5 x 10(15) e/cm(2). The results obtained demonstrate that the irradiation-induced degradation of performances of the cells is mainly in the short circuit current and could be mostly recovered by annealing at 260 degrees C for 30 min. Four electron traps, E-c - 0.24 eV, E-c - 0.41 eV, E-c - 0.51 eV, E-c - 0.59 eV, were found by DLTS analysis, only two shallow levels of which could be removed by the annealing. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
The prototype wafer of a low power integrated CMOS Transmitter for short-range biotelemetry application has been designed and fabricated, which is prospective to be implanted in the human brain to transfer the extracted neural information to the external computer. The transmitter consists of five parts, a bandgap current regulator, a ring oscillator, a buffer, a modulator and a power transistor. High integration and low power are the most distinct criteria for such an implantable integrated circuit. The post-simulation results show that under a 3.3 V power supply the transmitter provides 100.1 MHz half-wave sinusoid current signal to drive the off-chip antenna, the output peak current range is -0.155 mA similar to 1.250 mA, and on-chip static power dissipation is low to 0.374 mW. All the performances of the transmitter satisfy the demands of wireless real-time BCI system for neural signals recording and processing.
Resumo:
In this paper, we focus on the dipole mode of the two-dimensional (2D) photonic crystal (PC) single point defect cavity (SPDC) lasers and we report the fabrication and characterization of 2D PC SPDC lasers with the structure of adjusted innermost air holes. The photonic band and cavity Q factors are simulated by means of plane wave expansion (PWE) and finite-difference time-domain (FDTD), respectively. In order to improve the optical confinement of the SPDC, the diameter of the innermost holes was adjusted. Different lasing performances are observed experimentally. The experimental results agree with the theoretical prediction very well. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
This paper presents measurement methods for determining the reflection coefficients and frequency responses of semiconductor laser diodes, photodiodes, and EA modulator chips. A novel method for determining the intrinsic frequency responses of laser diodes is also proposed, and applications of the developed measurement methods are discussed. We demonstrate the compensation of bonding wire on the capacitances of both the submount and the laser diode, and present a method for estimating the potential modulation bandwidth of TO packaging technique. Initial study on removing the effects of test fixture on large-signal performances of optoelectronic devices at high data rate is also given.
Resumo:
A new-style silica planar lightwave circuit (PLC) hybrid integrated triplexer, which can demultiplex 1490-nm download data and 1550-nm download analog signals, as well as transmit 1310-nm upload data, is presented. It combines SiO2 arrayed waveguide gratings (AWGs) with integrated photodetectors (PDs) and a high performance laser diode (LD). The SiO2 AWGs realize the three-wavelength coarse wavelength-division multiplexing (CWDM). The crosstalk is less than 40 dB between the 1490- and 1550-nm channels, and less than 45 dB between 1310- and 1490- or 1550-nm channels. For the static performances of the integrated triplexer, its upload output power is 0.4 mW, and the download output photo-generated current is 76 A. In the small-signal measurement, the upstream 3-dB bandwidth of the triplexer is 4 GHz, while the downstream 3-dB bandwidths of both the analog and digital sections reach 1.9 GHz.
Resumo:
The typical MEMS fabrication of micro evaporators ensures the perfect smooth wall surface that is lack of nucleation sites, significantly decreasing the heat transfer coefficients compared with miniature evaporators fabricated using copper or stainless steel. In the present paper, we performed the boiling heat transfer experiment in silicon triangular microchannel heat sink over a wide parameter range for 102 runs. Acetone was used as the working fluid. The measured boiling heat transfer coefficients versus the local vapor mass qualities are compared with the classical Chen’s correlation and other correlations for macro and miniature capillary tubes. It is found that most of these correlations significantly over-predict the measured heat transfer coefficients. New correlations are given. There are many reasons for such deviations. The major reason is coming from the perfect smooth silicon surface that lowers the heat transfer performances. New theory is recommended for the silicon microchannel heat sink that should be different from metallic capillary tubes.
Resumo:
The production of biodiesel is greatly increasing due to its enviromental benefits. However, production costs are still rather high, compared to petroleum-based diesel fuel. The introduction of a solid heterogeneous catalyst in biodiesel production could reduce its price, becoming competitive with diesel also from a financial point of view. Therefore, great research efforts have been underway recently to find the right catalysts. This paper will be concerned with reviewing acid and basic heterogeneous catalyst performances for biodiesel production, examining both scientific and patent literature.
Resumo:
Two types of SiO2 with different mesopore size and HZSM-5 zeolite were used to prepare hybrid supported cobalt-based catalysts. The textual and structural properties of the catalysts were studied using N-2 physisorption, X-ray diffraction (XRD), and H-2 temperature-programmed reduction (TPR) techniques. Fischer-Tropsch synthesis (FTS) performances of the catalysts were carried out in a fixed-bed reactor. The combination effects of the meso- and micropores of the supports as well as the interaction between supports and cobalt particles on FTS activity are discussed. The results indicate that the catalyst supported on the tailor-made SiO2 and HZSM-5 hybrid maintained both meso- and micropore pores during the preparation process without HZSM-5 particles agglomerating. The mesopores provided quick mass transfer channels, while the micropores contributed to high metal dispersion and accelerated hydrocracking/hydroisomerization reaction rate. High CO conversion of 83.9% and selectivity to gasoline-range hydrocarbons (C-5-C-12) of 55%, including more than 10% isoparaffins, were achieved simultaneously on this type of catalyst.
Resumo:
The methane hydration process is investigated in a semi-continuous stirred tank reactor. Liquid temperatures and reaction rates without stirrer are compared with those occurring with stirrer, while at the same time better stirring conditions of the methane hydration process are given by the experiments. Some basic data of fluid mechanics, for example, stirring Reynolds number, Froucle number and stirrer power, are calculated during the methane hydration process, which can be applied to evaluate stirrer capacity and provide some basic data for a scaled up reactor. Based on experiment and calculations in this work, some conclusions are drawn. First, the stirrer has great influence on the methane hydration process. Batch stirring is helpful to improve the mass transfer and heat transfer performances of the methane hydration process. Second, induction time can be shortened effectively by use of the stirrer. Third, in this paper, the appropriate stirring velocity and stirring time were 320 rpm and 30 min, respectively, at 5.0 MPa, for which the storage capacity and reaction time were 159.1 V/V and 370 min, respectively. Under the condition of the on-flow state, the initial stirring Reynolds number of the fluid and the stirring power were 12,150 and 0.54 W, respectively. Fourth, some suggestions, for example, the use of another type of stirrer or some baffles, are proposed to accelerate the methane hydration process. Comparing with literature data, higher storage capacity and hydration rate are achieved in this work. Moreover, some fluid mechanics parameters are calculated, which can provide some references to engineering application.
Resumo:
We report laser-generated plasmas in atmosphere with electrical spark generated by a synchronization circuit. The breakdown thresholds under the conditions that the electrical spark is used and not used are compared. The breakdown threshold has a distinct decrease after the electrical spark is used. Breakdown thresholds as a function of atmosphere pressure have also been measured at laser wavelengths 532 nm and 1064 rim for the laser pulse width of 15ns. We also discuss the principle and performances of the ionized atmosphere by Nd:YAG laser under the condition of electrical spark introduction. Multiphoton ionization and cascade ionization play important roles in the whole process of atmosphere ionization. The free electron induced by electrical spark can supply the initialization free electron number for multiphoton ionization and cascade ionization. A model for breakdown in atmosphere, which is in good agreement with the experimental results, is described.
Resumo:
We report our recent progress of investigations on InGaN-based blue-violet laser diodes (LDs). The room-temperature (RT) cw operation lifetime of LDs has extended to longer than 15.6 h. The LD structure was grown on a c-plane free-standing (FS) GaN substrate by metal organic chemical vapor deposition (MOCVD). The typical threshold current and voltage of LD under RT cw operation are 78 mA and 6.8 V, respectively. The experimental analysis of degradation of LD performances suggests that after aging treatment, the increase of series resistance and threshold current can be mainly attributed to the deterioration of p-type ohmic contact and the decrease of internal quantum efficiency of multiple quantum well (MQW), respectively.
Resumo:
DFB lasers with continuously and arbitrarily chirped gratings of ultrahigh spatial precision are implemented by a method we proposed recently, using bent waveguides on homogeneous grating fields. Choosing individual bending functions we generate special chirping functions and obtain additional degrees of freedom to tailor and improve specific device performances, We present two applications for lasers showing several improved device properties and the effectiveness of our method, First, we implement continuously distributed phase-shifted lasers, revealing a considerably reduced photon pile-up, higher single-longitudinal mode stability, higher output power, lower linewidth, and higher yield than conventional abruptly phase-shifted lasers, Second, a novel tuning principle is applied in chirped multiple-section DFB lasers, showing 5.5-nm wavelength tuning, without any gaps, maintaining high side-mode suppression.
Resumo:
An improved 2 ×2 silicon-on-insulator Mach-Zehnder thermo-optical switch is designed and fabricated, which is based on strongly guided multimode interference couplers and single- mode phase-shifting arms. The multimode interference couplers and input/output waveguides are deeply etched to improve coupler performances and coupler-waveguide coupling efficiencies. However, shallow etching is used in the phase-shifting arms to guarantee single-mode property. The strongly guided coupler presents an attractive uniformity about 0. 03 dB and a low propagation loss of -0.6 dB. The 2× 2 switch shows an insertion loss as low as -6.8 dB, where the fiber-waveguide coupling loss of -4.3 dB is included, and the response-time is measured as short as 6.8 μs, which are much better than our previous results.