166 resultados para PECULIAR VELOCITIES
Resumo:
Based on the molecular Coulombic over barrier model for description of slow ion-atom collisions, the reaction window theory related to projectile velocity is presented briefly. According to the theory, the state-selective differential cross sections of single electron capture in O8+ -H, A(8+) -H, Ar8+-He, Ne10+-He and Ar18+-He collisions at different collision velocities are calculated and compared with experimental results. Calculations are also done for single, double, and triple electron capture in N-15(7+)-Ne collisions at fixed velocity of 0.53 a.u., and are compared with experimental data. It is found that the predictions of the final electronic state distribution of captured electron(s) are in agreement with experimental data, and both theory and experiments show that the widths of the reaction window increase with the projectile velocity. The differential cross sections predicted by the theory are larger for smaller Q-values, vice versa, when compared with experimental data.
Resumo:
Excitation functions are measured for different charge products of the F-19+(27) Al reaction in the laboratory energy range 110.25-118.75MeV in steps of 250keV at theta(lab) = 57 degrees, 31 degrees and -29 degrees. The coherence rotation angular velocities of the intermediate dinuclear systems formed in the reaction are extracted from the cross section energy autocorrelation functions. Compared the angular velocity extracted from the experimental data with the ones deduced from the sticking limit, it is indicated that a larger deformation of the intermediate dinuclear system exists.
Resumo:
This paper calculates the electron impact excitation rate coefficients from the ground term 2s(2)2p(2) P-3 to the excited terms of the 2s(2)2p(2), 2s2p(3), 2s(2)2p3s, 2s(2)2p3p, and 2s(2)2p3d configurations of N II. In the calculations, rnulticonfiguration Dirac-Fork wave functions have been applied to describe the target-ion states and relativistic distorted-wave calculation has been performed to generate fine-structure collision strengths. The collision strengths are then averaged over a Maxwellian distribution of electron velocities in order to generate the effective collision strengths. The calculated rate coefficients are compared with available experimental and theoretical data, and some good agreements are found for the outer shell electron excitations. But for the inner shell electron excitations there are still some differences between the present calculations and available experiments.
Resumo:
近玻尔速度高电荷态离子在物质表面诱发的溅射离子能谱研究在理论和实验上尚是一片空白。本工作针对溅射离子能谱测量,设计、建立了一台径向位置灵敏127o柱形静电离子能谱仪。该谱仪结合位置灵敏探测器,克服了传统静电谱仪只能通过扫描电场单次、单能量点取谱的缺陷,实现了分段取谱——单次可获取宽为0.85Ec ≤ E ≤ 1.15Ec的能谱,极大提高了实验测量效率。利用该谱仪,首次获得了0.8至1.8倍玻尔速度Ar7,8,9+离子与金属铍靶和高定向性石墨靶碰撞产生的溅射离子能谱(入射角45o ,出射角135o)。结果表明:1)能谱分布很宽,其峰值位于130eV至600eV之间,远大于线性级联碰撞区的几到十几eV;且峰位随入射离子速度增加向高能方向略有移动。2)铍靶的溅射能谱呈一个极不对称的峰分布——高能部分有很长的尾巴,下降趋势服从E-n分布;其能谱与入射离子速度关联很大,小于vBohr时指数n与线性级联碰撞接近,而大于vBohr时非线性贡献明显。3)石墨靶的能谱峰位与入射离子动能、势能相关;其谱形在上升到最大值后均出现一个很宽的平台,表明该系列碰撞系统中,非线性效应占主导
Resumo:
A comprehensive study on physical and chemical properties of Mo/MCM-22 bifunctional catalysts has been made by using combined analytic and spectroscopic techniques, such as adsorption, elemental analysis, and Xe-129 and P-31 NMR of adsorbed trialkylphosphine oxide probe molecules. Samples prepared by the impregnation method with Mo loadings ranging from 2-10 wt.% have been examined and the results are compared with that obtained from samples prepared by mechanical mixing using MoO3 or Mo2C as agents. Sample calcination treatment is essential in achieving a well-dispersed metal species in Mo/MCM-22. It was found that, upon initial incorporation, the Mo species tend to inactivate both Bronsted and Lewis sites locate predominantly in the supercages rather than the 10-membered ring channels of MCM-22. However, as the Mo loading exceeds 6 wt.%, the excessive Mo species tend to migrate toward extracrystalline surfaces of the catalyst. A consistent decrease in concentrations of acid sites with increasing Mo loading < 6 wt.% was found, especially for those with higher acid strengths. Upon loading of Mo > 6 wt.%, further decreases in both Bronsted and Lewis acidities were observed. These results provide crucial supports for interpreting the peculiar behaviors previously observed during the conversion of methane to benzene over Mo/MCM-22 catalyst under non-oxidative conditions, in which an optimal performance was achieved with a Mo loading of 6 wt.%. The effects of Mo incorporation on porosity and acidity features of the catalyst are discussed. (C) 2004 Published by Elsevier B.V.
Resumo:
Characteristics of electroosmotic flow (EOF) and the migration of neutral solutes under double stepwise gradient elution in capillary electrochromatography were studied systematically. EOF velocity proved to be the function of operation time changing with the introduction of the second mobile phase. Accordingly, the retention of components also changed. The migration of neutral solutes was studied under the following three situations; A, components eluted when the column was filled only with the first kind of mobile phase; B, solutes eluted still in the first kind of mobile phase while at that time two kinds of mobile phase coexisted in the column and C, samples eluted in the second kind of mobile phase. Equations to describe the retention times of components under these three kinds of conditions were deduced and applied to predict the retention times of 12 aromatic compounds. Relative errors between experimental and calculated values were below 5.0%, which proved the reliability of the equations. In addition, parameters that might affect the retention time of solutes, such as the transferring time of mobile phase vials, the capacity factors of components and EOF velocities two steps were studied systematically (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
A 2.5-D and 3-D multi-fold GPR survey was carried out in the Archaeological Park of Aquileia (northern Italy). The primary objective of the study was the identification of targets of potential archaeological interest in an area designated by local archaeological authorities. The second geophysical objective was to test 2-D and 3-D multi-fold methods and to study localised targets of unknown shape and dimensions in hostile soil conditions. Several portions of the acquisition grid were processed in common offset (CO), common shot (CSG) and common mid point (CMP) geometry. An 8×8 m area was studied with orthogonal CMPs thus achieving a 3-D subsurface coverage with azimuthal range limited to two normal components. Coherent noise components were identified in the pre-stack domain and removed by means of FK filtering of CMP records. Stack velocities were obtained from conventional velocity analysis and azimuthal velocity analysis of 3-D pre-stack gathers. Two major discontinuities were identified in the area of study. The deeper one most probably coincides with the paleosol at the base of the layer associated with activities of man in the area in the last 2500 years. This interpretation is in agreement with the results obtained from nearby cores and excavations. The shallow discontinuity is observed in a part of the investigated area and it shows local interruptions with a linear distribution on the grid. Such interruptions may correspond to buried targets of archaeological interest. The prominent enhancement of the subsurface images obtained by means of multi-fold techniques, compared with the relatively poor quality of the conventional single-fold georadar sections, indicates that multi-fold methods are well suited for the application to high resolution studies in archaeology.
Resumo:
本文进行了一系列水槽试验 ,研究不同长度的侵蚀细沟在坡度及入流量影响下的浅水水流水力学特性、侵蚀量及细沟的形态特征 .所采用的土壤材料为砂壤土 ,试验使用四种入流流量 ,四种坡度 ,四种细沟长度 .记录水流速度、沟宽及径流中的泥沙含量 ,并用多元回归方法分析了它们与坡度、入流量或它们的交互项之间的关系 .提出了一种数学模型来描述试验中沟宽的周期性形态变化 .提出了通过试验得出的不同细沟长度的产沙量来确定水流输沙能力的方法 ,并得出出测定输沙能力的采样长度为 2~ 4m ,通过对细沟形态变化分析进一步说明了所确定的水流输沙能力采样长度的正确性
Resumo:
The morphology of a H-shaped block copolymer (poly(ethylene glycol) backbone and polystyrene branches (PS)(2)PEG(PS)(2)) in a thin film has been investigated. A peculiar square lamella that has a phase-separated microdomain at its surface is obtained after spin coating. The experimental temperature plays a critical role in the lamellar formation. The copolymer first self-assembles into square lamellar micelles with an incomplete crystalline core due to the crystallizability of PEG.
Resumo:
The deformation mechanism or styrene/n-butyl acrylate copolymer latex films with fiber symmetric crystalline structure subjected to uniaxial stretching was studied using synchrotron small-angle X-ray scattering technique. The fibers were drawn at angles or 0, 35, and 55 degrees with respect to the Fiber axis. In all cases, the microscopic deformation within the crystallites was Found to deviate from affine deformation behavior with respect to the macroscopic deformation ratio. Moreover, the extent of this deviation is different in the three cases. This peculiar behavior can be attributed to the relative orientation of the (111) plane of the crystals, the plane of densest packing, with respect to the stretching direction in each case. When the stretching direction coincides with the crystallographic (111) plane, which is the case for stretching directions of 0 and 55 degrees with respect to the fiber axis, the microscopic deformation deviates less from affine behavior than when the stretching direction is arbitrarily oriented with respect to the crystallographic (111) plan.
Resumo:
Dithiols of N-hexadecyl-3,6-di(p-mercaptophenylacetylene)carbazole (HDMC) have been synthesized and employed to form self-assembled monolayers (SAMs) on gold. One characteristic of the HDMC molecule is its peculiar molecular structure consisting of a large and rigid headgroup and a small and flexible alkyl-chain tail. HDMC adsorbates can attach to gold substrates by a strong Au-S bond with weak van der Waals interactions between the alkyl-chain tails, leading to a loosely packed hydrophobic SAM. In this way we can couple hybrid bilayer membranes (HBMs) to gold surfaces with more likeness to a cell bilayer than the conventional HBMs based on densely packed long-chain alkanethiol SAMs. The insulating properties and stability of the HDMC monolayer as well as the HDMC/lipid bilayer on gold have been investigated by electrochemical techniques including cyclic voltammetry and impedance spectroscopy. To test whether the quality of the bilayer is sufficiently high for biomimetic research, we incorporated the pore-forming protein a-hemolysin) and the horseradish peroxidase into the bilayers, respectively.
Resumo:
Submonolayer thin films of a three-ring bent-core (that is, banana-shaped) compound, m-bis(4-n-octyloxystyryl)benzene (m-OSB), were prepared by the vacuum-deposition method, and their morphologies, structures, and phase behavior were investigated by atomic force microscopy (AFM) and transmission electron microscopy (TEM). The films have island shapes ranging from compact elliptic or circular patterns at low temperatures (below 40 degreesC) to branched patterns at high temperatures (above 60 degreesC). This shape evolution is contrary to the prediction based on the traditional diffusion-limited aggregation (DLA) theory. AFM observations revealed that two different mechanisms governed the film growth, in which the compact islands were formed via a dewetting-like behavior, while the branched islands diffusion-mediated. It is suggested m-OSB forms a two-dimensional, liquid crystal at the low-temperature substrate that is responsible for the unusual formation of compact islands. All of the monolayer islands are unstable and apt to transform to slender bilayer crystals at room temperature. This phase transition results from the peculiar molecular shape and packing of the bent-core molecules and is interpreted as escaping from macroscopic net polarization by the formation of an antiferroelectric alignment.
Resumo:
Numerous reports have focused on ferrocene-terminated electroactive self-assembled monolayers (SAMs) on a flat An surface but only a few on ferrocene SAMs on An colloid. In this paper, we employ 4-ferrocene thiophenol as a novel capping agent to produce electroactive gold nanoparticles in consideration of the peculiar pi-conjugated structure. Transmission electron microscopy shows the narrow-dispersed gold core with an average core diameter of ca. 2.5 nm. UV/vis spectra examine the pi-conjugated structure of 4-ferrocene thiophenol and surface plasmon absorbance of the indicated gold nanoparticles. X-ray photoelectron spectroscopy reveals electronic properties of the An core and thiol ligands. Electrochemical measurement shows that the oxidation peak current is proportional to the scan rate, indicating the electrode process is controlled by adsorbed layer reaction. The formal potential of the Fc-MPCs is compared with that of free ferrocene in MeCN solution and the Fc-SAMs. The shifts are attributed to the phenyl moiety in the 4-ferrocene thiophenol and dielectric constant of the solvation environment.
Resumo:
The laser-desorption-ionization time-of-flight mass spectrometry and desorption-electron-ionization mass spectrometry were employed for the characterization of metallofullerenes extract. it was found that the relative intensities of metallofullerenes in this positive-ion, negative-ion LD-TOF MS and DEI MS were much different. This phenomenon should have relationship with the peculiar ionization energies and electron affinities of metallofullerenes.
Resumo:
An electrode modified with a polybasic lanthanide heteropoly tungstate/molybdate complex K10H3[Nd(SiMo7W4O39)(2)] entrapped into polypyrrole (PPy) film, denoted as Nd(SiMo7W4)(2)-PPy, exhibits three couples of two-electron redox waves in pH 1-5 buffer solutions. The redox waves are surface-controlled at lower scan rates and diffusion-controlled at higher scan rates. The effects of pH on the electrochemical behavior of Nd(SiMo7W4)(2) in PPy film were investigated in detail and compared with that of Nd(SiMo7W4)(2) in aqueous solution. The various charge states of PPy during its redox process have peculiar effects on the relationship between pH and formal potentials of Nd(SiMo7W4)(2)-PPy at different acidities. The Nd(SiMo7W4)(2)-PPy cme can remarkably catalyze the electrochemical reduction of bromate with good stability. (C) 1997 Elsevier Science Ltd.