265 resultados para Mechanical machining


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ball milling of Fe-24Mn and Fe-24Mn-6Si mixed powders has been performed by the high energy ball milling technique. By employing X-ray diffraction and Mossbauer measurements, the composition evolution during the milling process has been investigated. The results indicate the formation of paramagnetic Fe-Mn or Fe-Mn-Si alloys with a metastable fee phase as final products, which imply that the Fe and Mn proceed a co-diffusion mechanism through the surface of fragmented powders. The thermal stability and composition evolution of the as-milled alloys were discussed comparing with the bulk alloy. (C) 1999 Published by Elsevier Science S.A. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Micro and nanomechanical resonators are powerful and label-free sensors of analytes in various environments. Their response, however, is a convolution of mass, rigidity, and nanoscale heterogeneity of adsorbates. Here we demonstrate a procedure to disentangle this complex sensor response, to simultaneously measure both mass and elastic properties of nanometer thick samples. This turns an apparent disadvantage of these resonators into a striking and unique asset, enabling them to measure more than mass alone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A three-spring-in-series model is proposed for the nanobelt (NB) indentation test. Compared with the previous two-spring-in-series model, which considers the bending stiffness of atomic force microscope cantilever and the indenter/NB contact stiffness, this model adds a third spring of the NB/substrate contact stiffness. NB is highly flexural due to its large aspect ratio of length to thickness. The bending and lift-off of NB form a localized contact with substrate, which makes the Oliver-Pharr method [W. C. Oliver and G. M. Pharr, J. Mater. Res. 7, 1564 (1992)] and Sneddon method [I. N. Sneddon, Int. J. Eng. Sci. 3, 47 (1965)] inappropriate for NB indentation test. Because the NB/substrate deformation may have significant impact on the force-indentation depth data obtained in experiment, the two-spring-in-series model can lead to erroneous predictions on the NB mechanical properties. NB in indentation test can be susceptible to the adhesion influence because of its large surface area to volume ratio. NB/substrate contact and adhesion can have direct and significant impact on the interpretation of experimental data. Through the three-spring-in-series model, the influence of NB/substrate contact and adhesion is analyzed and methods of reducing such influence are also suggested. (C) 2010 American Institute of Physics. [doi:10.1063/1.3432748]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An indentation simulation of the crystal Ni is carried out by a molecular dynamics technique (MD) to study the mechanical behavior at nanometer scales. Indenter tips with both sphere shape and conical shape with 60 cone angle are used, and simulation samples with different crystal orientations are adopted. Some defects such as dislocations and point defects are observed. It is found that nucleated defects (dislocations, amorphous atoms) are from the local region near the pin tip or the sample surface. The temperature distribution of the local region is analyzed and it can explain our MD simulation results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

<正>The so-called one dimensional(1D) nanostructures or wirelike nanoentities,such as nanowire(NW),nanotube(NT),and nanobelt(NB) have attracted much interest in scientific community because of their remarkable mechanical,electrical,thermal properties and potential applications in wide variety of devices.The mechanical failure of 1D nanostructures can lead to the malfunction or even failure of entire device and 1D nanostructures may also have size-dependent properties. Therefore,an accurate measurement of their mechanical properties is of

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The indention simulation of the crystal Ni is carried out by molecular dynamics technique (MD) to study the mechanical behavior at nanometer scales, the indenter tips with sphere shape is used. Some defects such as dislocations, point defects are observed. It is found that defects (dislocations, amorphous) nucleated is from local region near the pin tip or the sample surface. The temperature distribution of local region is analyzed and it can explain our MD simulation result.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Charge transfer due to collisions of ground state O3+ (2s(2)2p P-2) ions with molecular hydrogen is investigated using the quantum-mechanical molecular-orbital close-coupling (MOCC) method, and electronic and vibrational state-selective cross sections along with the corresponding differential cross sections are calculated for projectile energies of 100, 500, 1000 and 5000 eV/u at the orientation angles of 25 degrees,45 degrees and 89 degrees. The adiabatic potentials and radial coupling matrix elements utilized in the QMOCC calculations were obtained with the spin-coupled valence-bond approach. The infinite order sudden approximation (IOSA) and the vibrational sudden approximation (VSA) are utilized to deal with the rotation of H-2 and the coupling between the electron and the vibration of H-2. It is found that the distribution of vibrationally resolved cross sections with the vibrational quantum number upsilon' of H-2(+) (upsilon') varies with the increment of the projectile energy; and the electronic and vibrational stateselective differential cross sections show similar behaviors: there is a highest platform within a very small scattering angle, beyond which the differential cross sections decrease as the scattering angle increases and lots of oscillating structures appear, where the scattering angle of the first structure decreases as E-P(-1/2) with the increment of the projectile energy E-P; and the structure and amplitude of the differential cross sections are sensitive to the orientation of molecule H-2, which provides a possibility to identify the orientations of molecule H-2 by the vibrational state-selective differential scattering processes.