129 resultados para Growth mechanism


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new method is realized for the growth of self-formed quantum dots. We identify that dislocation-free islands can be formed by the strain from the strained superlattice taken as a whole. Unlike the Stranski-Krastanow (S-K) growth mode, the islands do not form during the growth of the corresponding strained single layers. Highly uniform quantum dots can be self-formed via this mechanism. The low temperature spectra of self-formed InGaAs/GaAs quantum dot superlattices grown on a (001) GaAs substrate have a full width at half maximum of 26-34 meV, indicating a better uniformity of quantum dot size than those grown in the S-K mode. This method can provide great degrees of freedom in designing possible quantum dot devices. 1998 Published by Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new metal catalysis-free method of fabricating Si or SiO2 nanowires (NWs) compatible with Si CMOS technology was proposed by annealing SiOx (x < 2) films deposited by plasma -enhanced chemical vapor deposition (PECVD). The effects of the Si content (x value) and thickness of SiOx films, the annealing process and flowing gas ambient on the NW growth were studied in detail. The results indicated that the SiOx film of a thickness below 300 rim with x value close to 1 was most favorable for NW growth upon annealing at 1000-1150 degrees C in the flowing gas mixture of N-2 and H-2. NWs of 50-100nm in diameter and tens of micrometers in length were synthesized by this method. The formation mechanism was likely to be related to a new type of oxide assisted growth (OAG) mechanism, with Si nanoclusters in SiOx films after phase separation serving as the nuclei for the growth of NWs in SiOx films > 200nm, and SiO molecules from thin SiO, film decomposition inducing the NW growth in films < 100nm. An effective preliminary method to control NW growth direction was also demonstrated by etching trenches in SiOx films followed by annealing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report a novel technique for growing high-quality GaAs on Si substrate. The process involves deposition of a thin amorphous Si film prior to the conventional two-step growth. The GaAs layers grown on Si by this technique using metalorganic chemical vapor deposition exhibit a better surface morphology and higher crystallinity as compared to the samples gown by conventional two-step method. The full width at half maximum (FWHM) of the x-ray (004) rocking curve for 2.2 mu m thick GaAs/Si epilayer grown by using this new method is 160arcsec. The FWHM of the photoluminescence spectrum main peak for this sample is 2.1 meV. These are among the best results reported so far. In addition, the mechanism of this new growth method was studied using high-resolution transmission electron microscopy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The wide stripe (ISjum) selective area growth (SAG) of InGaAsP by low pressure MOVPE is systematically investigated. The characteristics of the growth ratios,thickness enhancement factors .bandgap modulation,and composition modulation vary with the growth conditions such as mask width,growth pressure. Flux of III-group precursors are outlined and the rational mechanism behind SAG MOVPE is explained. In addition,the surface spike of the SAG InGaAsP is shown and the course of it is given by the variation of V /III .

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new method is realized for the growth of self-formed quantum dots. We identify that dislocation-free islands can be formed by the strain from the strained superlattice taken as a whole. Unlike the Stranski-Krastanow (S-K) growth mode, the islands do not form during the growth of the corresponding strained single layers. Highly uniform quantum dots can be self-formed via this mechanism. The low temperature spectra of self-formed InGaAs/GaAs quantum dot superlattices grown on a (001) GaAs substrate have a full width at half maximum of 26-34 meV, indicating a better uniformity of quantum dot size than those grown in the S-K mode. This method can provide great degrees of freedom in designing possible quantum dot devices. 1998 Published by Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Langmuir-Blodgett (LB) film of stearic acid was used as template to induce the nucleation and growth of KCl crystals when the KCl solution was cooled from 50 to 25 degrees C. When the LB film template was vertically dipped into the solution, only induced crystals with (1 1 0) orientation were formed. However, if the template was horizontally placed into solutions, both the induced nuclei at the solution/film interface and spontaneous nuclei formed in solution were simultaneously absorbed onto the LB film, and then grew further to form crystals. X-ray diffraction (XRD) patterns and optical microscopy images showed that the orientation and morphology of the crystals were controlled properly by changing the orientation and position of the LB films in the solutions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nearly monodisperse Pd nanocubes with controllable sizes were synthesized through a seed-mediated growth approach. By using Pd nanocubes of 22 nm in size as seeds, the morphology of the as-grown nanostructures was fixed as single-crystalline, which enabled us to rationally tune the size of Pd nanocubes. The formation mechanism of initial 22 nm nanocubes was also discussed. The size-dependent surface plasmon resonance properties of the as-synthesized Pd nanocubes were investigated. Compared with previous methods, the yield, monodispersity, perfection of the shape formation, and the range of size control of these nanocubes are all improved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Weak epitaxy growth (WEG) can afford high-mobility thin films of disk-like organic semiconductor of which mobility is up to the level of the corresponding single crystals. We investigated the WEG behavior and mechanism of planar phthalocyanine in the model system of metal-free phthalocyanine (H2Pc) grown on p-sexiphenyl (p-6P) ultrathin films (monolayers and double layers). Highly oriented H2Pc films with molecules standing up exhibited two kinds of different in-plane orientations, i.e., three sets of in-plane orientations and only one set of in-plane orientation, on p-6P monolayer and double-layer films, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Weak epitaxy growth (WEG) behavior and mechanism of copper hexadecafluorophthalocyanine (F16CuPc) on p-sexiphenyl (p-6P) monolayer film were investigated by atomic force microscopy (AFM), selected area electron diffraction (SEAD), and wide-angle X-ray diffraction (WAXD). High-quality F16CuPc films with high order, large size, and molecular-level smoothness were obtained successfully by WEG method. It was identified that there exists incommensurate epitaxial relation between highly oriented F16CuPc and p-6P films. The geometrical channels of p-6P monolayer surface induce the nucleation and growth of F16CuPc molecules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanism of inhibition of polymer film dewetting is investigated by adding a star comb-like polymer, four-arm P(S-ran-VB-g-PMMA), to PS film and PMMA film on different substrates. It is found that the mechanism of inhibition of polymer film dewetting is kinetic in nature, and is related to the miscibility between the additional compound and the polymer film. On addition to the miscible system [four-arm P(S-ran-VB-g-PMMA) and PMMA], the star comb-like polymers can increase the resistant force of dewetting with hole growth and inhibit the dewetting process of the thin polymer film by enrichment in the rim.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Large-scale arrays consist of dendritic single-crystalline Ag/Pd alloy nanostructures are synthesized for the first time. A simple galvanic replacement reaction is introduced to grow these arrays directly on Ag substrates. The morphology of the products strongly depended on the reaction temperature and the concentration of H2PdCl4 solution. The mechanism of the formation of alloy and the dendritic morphology has been discussed. These alloy arrays exhibit high surface-enhanced Raman scattering (SERS) activity and may have potential applications in investigation of "in situ" Pd catalytic reactions using SERS. Moreover, electrocatalytic measurements suggest that the obtained dendritic Ag/Pd alloy nanostructures exhibit electrocatytic activity toward the oxidation of formic acid.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transition of lamellar crystal orientation from flat-on to edge-on in ultrathin films of polystyrene-b-poly(ethylene oxide) (PS-b-PEO) via solvent vapor (toluene) treatment Was investigated. When the as-prepared film was treated in saturated solvent vapor, breakout crystals could form quickly, and then they transformed from square single crystals (flat-on lamellae) to dendrites and finally to nanowire crystals (edge-on lamellae). Initially, heterogeneous nucleation tit the polymer/substrate interface dominated the structure evolution, leading to flat-on lamellar crystals orientation. And the transition from faceted habits to dendrites indicated a transition of underlying mechanism from nucleation-controlled to diffusion-limited growth. As the solvent molecules gradually diffused into the polymer/substrate interface, it will subsequently weaken the polymer-substrate interaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a solvothermal route to the synthesis of SrF2 hierarchical flowerlike structures based on thermal decomposition of single source precursor (SSP) of strontium trifluoroacetate in benzylamine solvent. These flowerlike superstructures are actually composed of numerous aggregated nanoplates, and the growth process involves the initial formation of spherical nanoparticles and subsequent transformation into nanoplates. which aggregated together to form microdisks and finally flowerlike superstructures. The results demonstrate the important role of benzylamine in the formation of well-defined SrF2 superstructures, not only providing size and shape control to form nanoplates but also contributing to the self-assembly behavior of nanoplates to build into flower-like superstructures. Additionally, the photoluminescence properties of the obtained SrF2 superstructures are studied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Unusual 3D flower-shaped SnS2 nanostructures have been synthesized using a mild hydrothermal treatment in the presence of octyl-phenol-ethoxylate ( Triton X-100) at 160 degrees C. The nanostructures have an average size of 1 mu m, and consist of interconnected nanosheets with thicknesses of about 40 nm. Based on time-dependent experimental results, we ascribe the oriented attachment mechanism to the growth of the SnS2 nanostructures. The nonionic surfactant Triton X-100 plays a key role in the formation of the flower-like morphology. Room temperature gas-sensing measurements show that the 3D SnS2 nanostructures could serve as sensor materials for the detection of NH3 molecules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we have developed a one-pot, morphology controlled epitaxial growth method to synthesize novel cactus-like ZnO in solution. Utilizing zinc acetate and hexamethylenetetramine as the precursors, ZnO nanorods synthesized in the first step remained in the solution, without any separation, served directly as the matrix for the epitaxial growth in the second step. Control experiments revealed that a proper mass of precursors added in the second step was crucial to form cactus-like ZnO. The as-synthesized ZnO was single crystalline and possessed three photoluminescence emissions centered at 390, 425 and 490 run. Finally, a possible mechanism for the epitaxial growth ZnO was proposed and discussed.