145 resultados para Galaxy: stellar content
Resumo:
White light emission from amplified spontaneous emission (ASE) was realized by optically pumping fluorescent dye 4-(dicy-anomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) doped semiconducting poly(9,9-dioctylfluorene) (PFO) polymer thin films. Two individual ASE peaks originating from DCJTB and PFO were observed by carefully controlling the DCJTB concentration in PFO. The studies of the ASE characteristics of DCJTB:PFO thin films lead to the conclusion that the DCJTB:PFO system with 0.3% w/w DCJTB dopant concentration in PFO showed the best ASE performance.
Resumo:
Liquid polybutadiene with desirable 1,2-units content was synthesized by Co(naph)(2)-Al-2(C2H5)(3)Cl-3-P(OPh)(3) catalyst system. It was shown that liquid polybutadiene having adequate 1,2-unit content (vinvl =35%-40%) molecular weight(M-n = 700-3500), and acceptabele conversion(>= 55%) can synthesized after optimizing polymerization conditions.
Resumo:
A new method for quantitative analysis of lactide has been developed by applying chemical kinetics to a HPLC system. The most important advance is its practical approach to the quantification of analytes that are unstable in the HPLC mobile phase. In HPLC analysis, anhydrous mobile phases cannot separate lactide from impurities, and only mixtures of water and organic solvent can achieve effective separation. By selecting conditions for testing and studying the kinetics of lactide hydrolysis, extensive experiments revealed that lactide degradation can be treated as a pseudo-first-order reaction under the given HPLC conditions, and lactide content or purity can be quantitatively determined. This method is practical for measuring the purity of the intermediate lactide in polylactic acid (PLA) production and the lactide content in PLA.
Resumo:
Microstructures and mechanical properties of the Mg-5Y-4Gd-xZn-0.4Zr alloys have been investigated. These results show that the Mg-5Y-4Gd-0.5Zn-0.4Zr alloy in the peak-aged condition exhibits the highest tensile strength, and the values of the ultimate tensile strength and yield tensile strength are 370 and 300 MPa, respectively. It is suggested that addition of 0.5% Zn has a great effect on age hardening response. The long periodic stacking structure has been found in these Zn-containing alloys, and the volume fraction of this phase increases with increasing Zn addition. This phase plays an important role in improvement of the mechanical properties, especially for the elongations. The beta' phase precipitates during the ageing process are responsible for the improvement of the mechanical properties of the alloys in the peak-aged condition.
Resumo:
To study the content variation of ginsenosides and alkaloids during combination of ginseng with veratrum nigrum, the ginsenosides and alkaloids in the decoction of ginseng with veratrum nigrum were analyzed and compared by high performance liquid chromatography-electrospray ionization-mass spectrometry (HPLC-ESI-MS) and electrospray ionization-mass spectrometry (ESI-MS). In the compatible decoction, eight ginsenosides and eight alkaloids. were detected, and the contents of six ginsenosides were found to be reduced, on the contrary, the contents of six alkaloids were increased. During combination of ginseng with veratrum nigrum, the contents of ginsenosides were reduced and those of the toxic alkaloids were increased. From the chemical point of view, the traditional theory is right that ginseng and veratrum nigrum are incompatible with each other.
Resumo:
In this work, the absorption spectral characteristics and color-change reaction mechanism of cobalt(II) chloride(COCl2) in alcohol organic solvents has been investigated in the presence of water, and then the optimum conditions for determining the water content in the solvents were selected. Results indicated that the absorption spectra Of COCl2 in alcohols decreased with the increment of water content. At the maximum absorption wavelength of 656 nm, there were good linear relationships between the logarithm of the absorbance and the water content in organic solvents such as ethanol, n-propanol, iso-propanol and n-butanol with related coefficients in the range of 0.9996 similar to 0.9998. For determining water content in organic solvents, this method is simple, rapid, sensitive, reproducible and environmentally friendly. Furthermore, the linear range cannot restrict determination of the water content in organic solvents. This method had been applied to determine the water content in ethanol and n-butanol with satisfactory recovery of water in n-butanol between 98.41%-101.29%.
Resumo:
A series of acrylonitrile-butadiene-styrene (ABS) with different rubber content were prepared by diluting ABS grafting copolymer containing 60% rubber with a styrene-acrylonitrile copolymer. ABS prepared were blended with bisphenol-A-polycarbonate (PC) at the ratio of 70/30, 50/50, and 30/70 to prepare PC/ABS blends. Influence of rubber content in ABS on the properties of ABS and PC/ABS blends were investigated. PC/ABS blends with different compositions got good toughness when the rubber in ABS increased to the level that ABS itself got good toughness. The tensile properties and processability of PC/ABS blends decreased with the increase of the total rubber content introduced into the blends. ABS with the rubber content of 30 wt% is most suitable to be used to prepare PC/ABS blends. The rubber content in ABS affected the viscosity of ABS, and subsequently the viscosity ratio of PC to ABS. As a result, the morphology of PC/ABS blends varied. The increase of rubber content in ABS results in finer structure of PC/ABS blends.
Resumo:
The crystallization behavior and morphology of nonreactive and reactive melt-mixed blends of polypropylene (PP) and polyamide (PA12; as the dispersed phase) were investigated. It Was found that the crystallization behavior and the size of the PA12 particles were dependent on the content of the compatibilizer (maleic anhydride-modified polypropylene) because an in situ reaction occurred between the maleic anhydride groups of the compatibilizer and the amide end groups of PA12. When the amount of compatibilizer was more than 4%, the PA12 did not crystallize at temperatures typical for bulk crystallization. These finely dispersed PA12 particles crystallized co-incidently with the 1313 phase. The changes in domain size with compatibilizer content were consistent with Wu's theory. These investigations showed that crystallization of the dispersed phase Could not be explained solely by the size of the dispersion. The interfacial tension between the polymeric components in the blends may yield information on the fractionation of crystallization.
Resumo:
The effects of rubber content and temperature on dynamic fracture toughness of ABS materials have been investigated based on the J-integral and crack opening displacement (COD, delta) concepts by an instrumented Charpy impact test. A multiple specimens R-curve method and stop block technique are used. It is shown that the materials exhibit a different toughness behavior, depending on rubber content and temperature. The resistance against stable crack initiation (J(0.2) or delta(0.2)) increases with increasing rubber content. However, J(0.2) first increased with increasing temperature until reaching the maximum value; after that, it decreases with further increasing the temperature. (C) 2000 John Wiley & Sons, Inc.
Resumo:
Transition of crystalline structure and morphology of metallocene-catalyzed butyl branched polyethylene with branch content has been studied. It was found that the long periods of the branched polyethylene were controlled by crystallization conditions for the lower branch content samples and by branch contents for the higher branch content samples. When the branch content increased to a critical value the branched polyethylene had no long period because the crystalline morphology was changed from folded chain crystal to a bundled crystal. The TEM observations supported the results. The transition of the crystalline morphology resulted from the reduction of lamellar thickness with increasing of branch content since the branches were rejected from the lattice. The reduction of lamellar thickness with increasing of branch content also resulted in lattice expansion and decrease of melt temperature of the branched polyethylene. (C) 2001 Kluwer Academic Publishers.
Resumo:
Sodium sulfonate-functionalized polyether ether ketone)s derived from Bisphenol A with a degree of sulfonation up to 2.0 were synthesized by aromatic nucleophilic polycondensation of various amounts of 5,5-carbonylbis(2-fluorobenzenesulfonate) (1), 4,4'-diflurobenzophenone (2) and Bisphenol A (2). Copolymers showed excellent thermal stability and good mechanical properties. The selectivity of water vapor over nitrogen of membranes prepared from copolymers 3a and 3h was determined to be 3.43 x 10(6) and 1.05 x 10(7), respectively.
Resumo:
The fracture behavior of ABS materials with a particle diameter of 110 nm and of 330 nm was studied using instrumented Charpy impact tests. The effects of rubber content and temperature on fracture behavior, deformation mode, stable crack extension, plastic zone size, J-integral value, and crack opening displacement were investigated. In the case of a particle size of 110 nm, the material was found to break in a brittle manner, and the dominant crack mechanism was unstable crack propagation. Fracture toughness increases with increasing rubber content. In the case of a particle size of 330 nm, brittle-to-tough transition was observed. The J-integral value first increases with rubber content, then levels off after the rubber content is greater than 16 wt %. The J-integral value of a particle diameter of 330 nm was found to be much greater than that of 110 nm. The J-integral value of both series first increased with increasing temperature until reaching the maximum value, after which it decreased with further increasing temperature. The conclusion is that a particle diameter of 330 nm is more efficient than that of 110 nm in toughening, but for both series the effectiveness of rubber modification decreases with increasing temperatures higher than 40 degreesC because of intrinsic craze formation in the SAN matrix at temperatures near the glass transition of SAN. (C) 2000 John Wiley & Sons, Inc.
Resumo:
The content and distribution of rare earth(RE) in normal human plasma have been investigated by ultrafiltration, FPLC and ICP-MS methods, The results showed that there are trace RE in normal human plasma, and their contents are in accordance with their abundance, The RE can bond with immunoglobulin G(IgG), transferrin(Tf) and albumin(Alb) species, but mostly bond with Tf.