142 resultados para ERROR PROPAGATION
Resumo:
Survey propagation是一种新生的SAT(CSP)算法.它基于统计物理的spin glass模型,针对具体问题进行纵览(survey),从而极大地降低求解的复杂度.但sp算法在某些时候不收敛,或引导向错误的解.对此,G.Parisi提出一种复杂回溯(backtrack)算法,而作者在sp中加入简单回溯,也使一部分此类问题得到解决.
Resumo:
In recognition-based user interface, users’ satisfaction is determined not only by recognition accuracy but also by effort to correct recognition errors. In this paper, we introduce a crossmodal error correction technique, which allows users to correct errors of Chinese handwriting recognition by speech. The focus of the paper is a multimodal fusion algorithm supporting the crossmodal error correction. By fusing handwriting and speech recognition, the algorithm can correct errors in both character extraction and recognition of handwriting. The experimental result indicates that the algorithm is effective and efficient. Moreover, the evaluation also shows the correction technique can help users to correct errors in handwriting recognition more efficiently than the other two error correction techniques.
Resumo:
We investigate slow-light pulse propagation in an optical fiber via transient stimulated Brillouin scattering. Space-time evolution of a generating slow-light pulse is numerically calculated by solving three-wave coupled-mode equations between a pump beam, an acoustic wave, and a counterpropagating signal pulse. Our mathematical treatments are applicable to both narrowband and broadband pump cases. We show that the time delay of 85% pulse width can be obtained for a signal pulse of the order of subnanosecond pulse width by using a broadband pump, while the signal pulse is broadened only by 40% of the input signal pulse. The physical origin of the pulse broadening and distortion is explained in terms of the temporal decay of the induced acoustic field. (C) 2009 Optical Society of America
Resumo:
A new method of tailoring stimulated Brillouin scattering (SBS) gain spectrum for slow light propagation is proposed by use of two Gaussian-shaped broadband pump beams with different powers and spectral widths. The central frequency interval between the two pump beams are carefully set to be two inherent Brillouin frequency shift, ensuring that the gain spectrum of one pump has the same central frequency with the loss spectrum of the other one. Different gain profiles are obtained and analyzed. Among them a special gain profile is found that ensures a zero-broadening of the signal pulse independent of the Brillouin gain. This is owing to the compensation between the positive gain-dependent broadening and the negative GVD (group velocity dispersion) dependent broadening. The relationship of two pump beams is also found for constructing such a gain profile. It provides us a new idea of managing the broadening of SBS-based slow pulse by artificially constructing and optimizing the profile of gain spectrum. (c) 2008 Optical Society of America.
Resumo:
SPIE
Resumo:
The propagation characteristics of fiexural waves in periodic grid structures designed with the idea of phononic crystals are investigated by combining the Bloch theorem with the finite element method. This combined analysis yields phase constant surfaces, which predict the location and the extension of band gaps, as well as the directions and the regions of wave propagation at assigned frequencies. The predictions are validated by computation and experimental analysis of the harmonic responses of a finite structure with 11 × 11 unit cells. The fiexural wave is localized at the point of excitation in band gaps, while the directional behaviour occurs at particular frequencies in pass bands. These studies provide guidelines to designing periodic structures for vibration attenuation.
Resumo:
SOI waveguides fabricated by wet-etching method are demonstrated. The single mode waveguide and 1×2 3dB BBI splitter are analyzed and designed by three dimensional beam propagation method to correct the error of effective index method and guided mode method. The devices are fabricated. Excellent performances, such as low propagation loss of -1.37dB/cm, low excess of -2.2dB, and good uniformity of 0.3dB, are achieved.