167 resultados para Diffraction phase grating
Resumo:
Based on Fresnel-Mrchhoff diffraction theory, a diffraction model of nonlinear optical media interacting with a Gaussian beam has been set up that can interpret the Z-scan phenomenon in a new way. This theory not only is consistent with the conventional Z-scan theory for a small nonlinear phase shift but also can be used for larger nonlinear phase shifts. Numerical computations indicate that the shape of the Z-scan curve is greatly affected by the value of the nonlinear phase shift. The symmetric dispersionlike Z-scan curve is valid only for small nonlinear p base shifts (\Deltaphi(0)\ < pi), but, with increasingly larger nonlinear phase shifts, the valley of the transmittance is severely suppressed and the peak is greatly enhanced. The power output through the aperture will oscillate with increasing nonlinear phase shift caused by the input laser power. The aperture transmittance will attenuate and saturate with increasing Kerr constant. (C) 2003 Optical Society of America.
Resumo:
When a grating is recorded in a bacteriorhodopsin film by two linear parallel polarized beams together with anauxiliary violet light, the diffraction efficiency has a dependence on the polarization orientation of the violet light as well as its intensity. A method for calculating the diffraction efficiency of gratings in bacteriorhodopsin is proposed based on the two-state photochromic model, considering the saturation effect and the polarization status of all the involved lights. It is found that the polarization orientation of the violet light produces an approximate-cosine and an approximate-sine modulation on the steady-state diffraction efficiency separately at low and high intensities, respectively. The parallel polarized violet light can improve the steady-state diffraction efficiency to a larger degree than the perpendicularly polarized violet light when both are at their optimal intensities. The optimal intensity for the parallel polarized violet light is lower than that of the perpendicular polarized one. Thus, the improvement of the steady-state diffraction efficiency is less sensitive to the intensity of perpendicular polarized violet light than to that of parallel polarized violet light. (C) 2008 Optical Society of America.
Resumo:
The GaInAsSb/AlGaAsSb/GaSb heterostructures were grown by the liquid phase epitaxy (LPE) technique. The materials were characterized by means of optical microscopy, electroprobe microanalysis (EPMA), double-crystal X-ray diffraction, capacitance-voltage (C-V) and Van der Pauw measurments, infrared absorption spectra, photoluminescence and laser Raman scattering. The results show that the materials have fine surface morphology, low lattice mismatch and good homogeneity. Room-temperature light-emitting diodes with an emission wavelength of 2.2-mu-m were obtained by using the GaInAsSb/AlGaAsSb DH structures.
Resumo:
Fe-N films were deposited on Si(100) and GaAs(100) substrates at room temperature by ion beam assisted deposition under various N/ Fe atomic arrival ratio, 0.09, 0.12, 0.15. The results of X-ray diffraction indicated that the film deposited at 0.12 of N/Fe arrival ratio contained a considerable fraction of the Fe16N2 phase which had grown predominantly in the [001] orientation. For the larger N/Fe arrival ratio, a martensite phase with 15 at.% nitrogen was obtained. It was found that a lower deposition temperature (<200 degrees C) was necessary for the formation of the Fe16N2 phase.
Resumo:
Ultrathin single quantum well (about one monolayer) grown on GaAs(001) substrate with GaAs cap layer has been studied by high resolution x-ray diffractometer on a beamline of the Beijing Synchrotron Radiation Facility. The interference fringes on both sides of the GaAs(004) Bragg peak are asymmetric and a range of weak fringes in the higher angle side of the Bragg peak is observed. The simulated results by using the kinematical diffraction method shows that the weak fringe range appears in the higher angle side when the phase shift introduced by the single quantum well is very slightly smaller than m pi (m:integer), and vice versa. After introducing a reasonable model of single quantum well, the simulated pattern is in good agreement with the experiment. (C) 1996 American Institute of Physics.
Resumo:
A 1.55μm InGaAsP-InP three-section DFB laser with hybrid grating is fabricated and self-pulsations (SP) with frequencies around 20GHz are observed. The mechanism of SP generation in this device is researched. Furthermore, the important role of the phase tuning section on the SP is investigated.
Resumo:
In order to improve crystal quality for growth of quaternary InAlGaN, a series of InAlGaN films were grown on GaN buffer layer under different growth temperatures and carrier gases by low-pressure metal-organic vapor phase epitaxy. Energy dispersive spectroscopy (EDS) was employed to measure the chemical composition of the quaternary, high resolution X-ray diffraction (HRXRD) and photoluminescence (PL) technique were used to characterize structural and optical properties of the epilayers, respectively. The PL spectra of InAlGaN show with and without the broad-deep level emission when only N2 and a N2+H2 mixture were used as carrier gas, respectively. At pressure of 1.01×104 Pa and with mixed gases of nitrogen and hydrogen as carrier gas, different alloy compositions of the films were obtained by changing the growth temperature while keeping the fluxes of precursors of indium (In), aluminum (Al), gallium (Ga) and nitrogen (N2) constant. A combination of HRXRD and PL measurements enable us to explore the relative optimum growth parameters-growth temperature between 850℃ and 870℃,using mixed gas of N2+H2 as carrier gas.
Resumo:
Wurtzite single crystal GaN films have been grown onto a gamma-Al2O3/Si(001) substrate in a horizontal-type low pressure MOVPE system. A thin gamma-Al2O3 layer is an intermediate layer for the growth of single crystal GaN on Si although it is only an oriented polycrystal film as shown by reflection high electron diffraction. Moreover, the oxide is not yet converted to a fully single crystal film, even at the stage of high temperature for the GaN layer as studied by transmission electron microscopy. Double crystal x-ray linewidth of (0002) peak of the 1.3 mu m sample is 54 arcmin and the films have heavy mosaic structures. A near band edge peaking at 3.4 eV at room temperature is observed by photoluminescence spectroscopy. Raman scattering does not detect any cubic phase coexistence.
Resumo:
Cubic GaN(c-GaN) films are grown on GaAs(001) substrates by metalorganic chemical vapor deposition (MOCVD). Two GaN samples were grown with different buffer layer, the deposition time of each was 1 and 3 min, respectively. 4-circle X-ray double crystal diffraction (XRDCD) was used to study the secondary crystallographic phases presented in the c-GaN films. The phase composition of the epilayers was determined by X-ray reciprocal space mapping. The intensities of the c-GaN(002) and h-GaN(10 (1) over bar 1) planes detected in the mapping were investigated by omega scans. The content of the hexagonal phase inclusions in the c-GaN films was calculated to about 1.6 and 7.9%, respectively. The thicker buffer layer is not preferable for growing high quality pure c-GaN films. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
The increased emphasis on sub-micron CMOS/SOS devices has placed a demand for high quality thin silicon on sapphire (SOS) films with thickness of the order 100-200 nm. It is demonstrated that the crystalline quality of as-grown thin SOS films by the CVD method can be greatly improved by solid phase epitaxy (SPE) process: implantation of self-silicon ions and subsequent thermal annealing. Subsequent regrowth of this amorphous layer leads to a greater improvement in silicon layer crystallinity and channel carrier mobility, evidenced, respectively, by double crystal X-ray diffraction and electrical measurements. We concluded that the thin SPE SOS films are suitable for application to high-performance CMOS circuitry. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
The formations of the surface plasmonpolariton (SPP) bands in metal/air/metal (MAM) sub-wavelength plasmonic grating waveguide (PGW) are proposed. The band gaps originating from the highly localized resonances inside the grooves can be simply estimated from the round trip phase condition. Due to the overlap of the localized SPPs between the neighboring grooves, a Bloch mode forms in the bandgap and can be engineered to build a very flat dispersion for slow light. A chirped PGW with groove depth varying is also demonstrated to trap light, which is validated by finite-difference time-domain (FDTD) simulations with both continuous and pulse excitations.
Resumo:
The catalytic performances of ZrO2-based catalysts were evaluated for the synthesis of higher alcohols from synthesis gas. The crystal phase structures were characterized by X-ray diffraction (XRD) and UV Raman. The results indicated that ZrO2 and Pd modified ZrO2 catalysts were effective catalysts in the synthesis of ethanol or isobutanol, and their selectivities basically depended on the crystal phase of ZrO2 surface. The ZrO2 with surface tetragonal crystal phase exhibited a high activity to form ethanol, while the ZrO2 with surface monoclinic crystal phase exhibited a high activity to form isobutanol. Temperature-programmed desorption (TPD) experiment indicated that the high activity of isobutanol formation from synthesis gas over monoclinic zirconia was due probably to the strong Lewis acidity of Zr4+ cations and the strong Lewis basicity of O2- anions of coordinative unsaturated Zr4+-O2- pairs on the surface of monoclinic ZrO2. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The dual-phase membrane of La0.15Sr0.85Ga0.3Fe0.7O3-delta-Ba0.5Sr0.5Fe0.2Co0.8O3-delta (LSGF-BSCF) was prepared successfully. This membrane was characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM) and electron probe micro-analyzer (EPMA). This membrane has a dense dual-phase structure: LSGF being the dense body of this membrane and BSCF as another phase running along the LSGF body. This structure is favorable for the oxygen permeation through the membrane. The oxygen permeation test shows that the oxygen permeation flux of LSGF-BSCF membrane (Jo(2) = 0.45 ml/min cm(2), at 915 degreesC) is much higher than that of LSGF membrane (Jo(2) = 0.05 ml/min cm(2)). Thickness dependence of oxygen permeation indicates that the oxygen permeation is controlled by the bulk diffusion. Compared to pure BSCF the dual-phase membrane of LSGF-BSCF is stable in reducing atmosphere. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
In this paper, the confined crystallization and phase transition behaviors of n-octadecane in microcapsules with a diameter of about 3 Pm were studied with the combination of differential scanning calorimetry (DSC), temperature dependent Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD).
Resumo:
The influence of the concentration of a nucleating agent (NA), namely 1,3:2,4-di(3,4-dimethylbenzylidene) sorbitol (DMDBS), on the gamma phase content in a propylene/ethylene copolymer was investigated by means of Differential Scanning Calorimetry (DSC), Wide-Angle X-ray Diffraction (WAXD), Small- Angle X-ray Scatter (SAXS) and Polarized Optical Microscopy (POM).