209 resultados para Desorption
Resumo:
The tertiary lanthanide complexes [Ln(hfth)(3)phen] (Ln=Er, Nd, Yb, Sm) and [Pr(tfnb)(3)phen] have been Successfully covalently attached in the ordered SBA-15 mesoporous materials via a functionalized 1,10-phenanthroline group 5-(N,N-bis-3-(triethoxysilyl)propyl)ureyl-1,10-phenanthroline (Phen-Si). The derivative materials [denoted as Ln(hfth)(3)phen-S15 and Pr(tfnb)(3)phen-S15; Ln=Er, Yb, Nd, Sm; hfth=4,4,5,5,6,6,6-heptafluoro-1-(2-thienyl)hexane-1,3-dionate; tfnb=4,4,4-trifluoro-1-(2-naphthyl)-1,3-butanedionate] were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and N-2 adsorption/desorption.
Resumo:
Several Chiral BINOL functionalized mesoporous silicas were prepared by post grafting of organosilane derivatives of (S)-BINOL (1,1'-bi-2-naphthol) on SBA-15 and characterized by C-13 CP/MAS NMR, FT-IR, UV-visible absorption spectra, elemental analysis, powder XRD, nitrogen adsorption-desorption isotherms and TEM techniques. Their catalytic properties were demonstrated in enantioselective Morita-Baylis-Hillman reaction of 3-phenylpropanal and cyclohexenone.
Resumo:
CeF3:Tb3+ nanoparticles were successfully prepared by a polyol process using diethylene glycol ( DEG) as solvent. After being coated with dense silica, these CeF3:Tb3+ nanoparticles can be coated with mesoporous silica using nonionic triblock copolymer EO20PO70EO20 ( P 123) as structure-directing agent. The composite can load ibuprofen and release the drug in the PBS. The composite was characterized by X-ray diffraction ( XRD), transmission electron microscopy ( TEM), nitrogen absorption/desorption isotherms, fluorescence spectra, and UV/Vis absorption spectra, respectively.
Resumo:
Oxidized carbon nanotubes are tested as the matrix for analysis of the melamine by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). Traditional MALDI matrix are not suit for analysis of the low molecular compounds due to the interference associated to the matrix clusters. Oxidized carbon nanotubes can transfer energy to the analyte under the laser irradiation, which makes analyte well ionized or desorbed. Moreover, the interference of the intrinsic matrix ions can be eliminated. Melamine as the a toxic additive which had been added in the milk powder, then it is necessary to establish a new method for detection of the melamine rapid and sensitive.
Resumo:
Porous SnO2 and SnO2-Eu3+ nanorods have been facilely prepared using triphenyltin hydroxide microrods as precursors. The porous structure of SnO2 nanorods, which was aggregated by small SnO2 nanocrystallites, has been confirmed by TEM images and nitrogen adsorption-desorption isotherms. The optical property of the porous SnO2-Eu3+ nanorods was investigated by UV-vis absorption and photoluminescence spectra.
Resumo:
Calmodulin is a ubiquitous calcium-binding protein in eukaryote cells and engages in various important biological pathways. In the present study, binding interactions between several metal ions and calmodulin were nvestigated by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS).The results revealed that the specific binding of metal ions with the protein could be detected using MALDI-TOF MS.
Resumo:
The determination of disulfide bonds becomes an important aspect of obtaining a comprehensive understanding of the chemical structure of a protein. Numerous experimental methods have been developed for the determination of disulfide bonds in proteins. Modern mass spectrometry has developed as an important tool for the analysis of disulfide bond patterns due to its advantages of being simple, rapid and sensitive. The dissociations of the disulfide bonds were detected during the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) analysis. These fragment ions were attributed to prompt fragmentation or “in-source decay” rather than “post-source decay”. For the double disulfide bonds, ions of plus sulfur and minus sulfur atoms corresponding to cleavages at different sites within the carbon-sulfur-sulfur-carbon disulfide bonds were also observed.
Resumo:
The discovery of the icosahedral phase (i-phase) in rapidly quenched Ti1.6V0.4Ni1-xCox (x=0.02-01) alloys is described herein. The i-phase occurs in a similar amount relative to the coexisting beta Ti phase. The electron diffraction patterns show the distinct spot anisotropy, indicating that the i-phase is metastable. The electrochemical hydrogen storage performance of these five alloy electrodes are also reported herein. The hydrogen desorption of nonelectrochemical recombination in the cyclic voltammetric (CV) response exhibits the demand for electrocatalytic activity improvement.
Resumo:
Two beta-diketones 4,4,4-trifluoro-1-2-thenoyl-1,3-butanedione (Htta) and 4,4,4-trifluoro-1-(2-naphthyl)-1,3-butanedione (Htfnb), which contain trifluoroalkyl chain, were selected as the main sensitizer for synthesizing Tm(L)(3)phen (L = tta, tfnb) complexes. The two near-infrared (NIR) luminescent thulium complexes have been covalently bonded to the ordered mesoporous material MCM-41 via a functionalized 1,10-phenanthroline (phen) group 5-(N,N-bis-3-(triethoxysilyl)propyl)ureyl-1,10-phenanthroline (phen-Si) [The resultant mesoporous materials are denoted as Tm(L)(3)phen-MCM-41 (L = tta, tfnb)]. The Tm(L)(3)phen-MCM-41 (L = tta, tfnb) mesoporous materials were characterized by small-angle Xray diffraction (XRD) and N-2 adsorption/desorption, and they show characteristic mesoporous structure of MCM-41.
Resumo:
A novel periodic mesoporous organosilica (PMO) material was synthesized through one-step co-condensation of 1,2-bis(triethoxysilyl)ethane (BTESE) and benzoic acid-functionalized organosilane (BA-Si) using cetyltrimethylammonium bromide (CTAB) as a structure-directing agent under basic conditions. The materials were fully characterized by FTIR, XRD, N-2 adsorption-desorption isotherms and FESEM. FTIR spectra proved that BA-Si was successfully incorporated into the PMO materials (PMOs) via benzyl group as a linker. XRD and N-2 adsorption-desorption isotherms revealed the characteristic mesoporous structure with highly uniform pore size distributions. FESEM confirmed that the morphology of the PMOs was significantly dependent cri the molar ratio of two organosilica precursors.
Resumo:
A novel bifunctional task-specific ionic liquid (TSIL), i.e. [trialkylmethylammonium][sec-nonylphenoxy acetate] ([A336] [CA-100]) was impregnated on intermediate polarized XAD-7 resin, and the prepared solvent impreganated resin (SIR) was studied for rare earth (RE) separation. Adsorption ability of the SIR was indicated to be obviously higher than that prepared by [A336][NO3] because of the functional anion of [A336][CA-100]. Adsorption kinetics, adsorption isotherm, separation and desorption of the SIR were also studied.
Resumo:
In this work, a new fluorescent method for sensitive detection of biological thiols in human plasma was developed using a near-infrared (NIR) fluorescent dye, FR 730. The sensing approach was based on the strong affinity of thiols to gold and highly efficient fluorescent quenching ability of gold nanoparticles (Au NPs). In the presence of thiols, the NIR fluorescence would enhance dramatically due to desorption of FR 730 from the surfaces of Au NPs, which allowed the analysis of thiol-containing amino acids in a very simple approach. The size of Au NPs was found to affect the fluorescent assay and the best response for cysteine detection was achieved when using Au NPs with the diameter of 24 nm, where a linear range of 2.5 x 10(-8) M to 4.0 x 10(-6) M and a detection limit of as low as 10 nM was obtained. This method also demonstrated a high selectivity to thiol-containing amino acids due to the strong affinity of thiols to gold.
Resumo:
In this paper, hydrothermal synthesized Fe3O4 microspheres have been encapsulated with nonporous silica and a further layer of ordered mesoporous silica through a simple sol-gel process. The surface of the outer silica shell was further functionalized by the deposition of YVO4:Eu3+ phosphors, realizing a sandwich structured material with mesoporous, magnetic and luminescent properties. The multifunctional system was used as drug carrier to investigate the storage and release properties using ibuprofen (IBU) as model drug by the surface modification. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), Fourier transform infrared spectroscopy (FT-IR), N-2 adsorption/desorption, photoluminescence (PL) spectra, and superconducting quantum interference device (SQUID) were used to characterized the samples.
Resumo:
Luminescent, mesoporous, and bioactive europium-doped hydroxyapatite (HAp:Eu3+) nanofibers and microbelts have been prepared by a combination of sol-gel and electrospinning processes with a cationic surfactant as template. The obtained multifunctional hydroxyapatite nanofibers and microbelts, which have mesoporous structure and red luminescence, were tested as drug carriers by investigating their drug-storage/release properties with ibuprofen (IBU) as model drug. X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution (HR) TEM, FTIR spectroscopy, N-2 adsorption/desorption, photoluminescence (PL) spectra, and UV/Vis spectroscopy were used to characterize the structural, morphological, textural, and optical properties of the resulting samples.
Resumo:
Luminescent and mesoporous europium-doped bioactive glasses (MBG:Eu) were successfully synthesized by a two-step acid-catalyzed self-assembly process combined with hydrothermal treatment in an inorganic-organic system. The obtained MBG was performed as a drug delivery carrier to investigate the drug storage/release properties using ibuprofen (IBU) as a model drug. The structural, morphological, textural and optical properties were well characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), N-2 adsorption/desorption, and photoluminescence (PL) spectra, respectively. The results reveal that the MBG exhibit the typical ordered characteristics of the hexagonal mesostructure. This composite shows sustained release profile with ibuprofen as the model drug. The IBU-loaded samples still show red luminescence of Eu3+ (D-5(0)-F-7(1, 2)) under UV irradiation, and the emission intensities of Eu3+ in the drug carrier system vary with the released amount of IBU, thus making the drug release be easily tracked and monitored by the change of the luminescence intensity.