116 resultados para Compatible solutes
Resumo:
Stimulus-Response Compatibility is a key concept in human-machine interaction. It is proved that to map stimulus to response according to salient-feature coding principle will get a compatible pair. In the designing of Chinese Pinyin Code inputting devices, stimulus-response compatibility will bring the device with features of ease of use and ease of learning. In this research, Response time and error rates of two designs of salient-feature coding principle and one design of random mapping were tested along with the QWERTY keyboard. Cross-modal Compatibility Effects were found, and no significant difference between two salient-feature coding types, both on response time and error rates; but response time has shown difference between salient-feature coding designs and random mapping design. Compared with the QWERTY keyboard group, the error rates of subjects of chord keyboard group showed no significant differences. But subjects assigned to the QWERTY keyboard group have a shorter response time. One possible reason is the subjects of chord keyboard group only at beginner skill after at most 6 hours practice whereas subjects of QWERTY group were at least at novice level after take a foundation of computer class at their own college.
Resumo:
With the studies of the Stimulus-Response Compatibility (SRC), more and more psychologists consider that the compatibility isn't only exist between stimulus and stimulus, response and response, but also any two sets in the information processing, it means that the compatibility is the basic feature of the human information processing. Research on the compatibility of the precue is a powerful evidence to support the issue. Dimension Overlap Model (Kornblum, 1990) is one of the most popular models to explain the mechanism of the SRC which focus on the dimension overlapping between the stimulus and response will activate the compatible response automatically, the compatibility effects origin from whether the compatible response prove or interference the response, the so the time course between the automatic activation and the task processing cause the dynamical time feature of the SRC (Kornblum, 1997). Yet the DO model has gotten many supports, it hasn't been tested in the paradigm of the precue task. At the same time, company with the development of the Environment Psychology, the effect of the ex-information in the environment on the inside information processing has drown much attention, does the validity probability of the cue have any influence on the cue compatibility? How about the relationship of the cue compatibility and the SRC? Research on the questions will reveal the characteristics of the human information processing, enhance the knowledge of the compatibility phenomena and resource, enlarge the field of SRC and produce more practice usage on the design of human-machine system. The mechanism and influence factors of symbolic compatibility between cue and stimulus were investigated within a precueing paradigm. The influence of the dimension overlapping relation between the cue and the stimulus, cue and the response on the reaction time were studied under the different kinds of SRC, to test whether or not it confirms the dimension overlap hypothesis, to test is there any effect of SOA and validity probability of cues on the cue compatibility. The results showed that the cue compatibility exists and owns such features: 1, It confirms the dimension overlap model that the cue which dimension overlapped with the stimulus or the response will influence the efficiency of the processing, the reaction time is shorter when the cue is congruent with the stimulus or the response that that of the incongruent cue; 2, Consistent to the automatic activation hypothesis, the time course is the important characteristic of the cue compatibility. The largest compatibility effect can be gotten from the middle duration of SOA. 3, The validity probability of cues influence the cue compatibility significantly, the strength of the cue compatibility effect grows stronger with the higher validity probability of cues. 4, The cue compatibility affect the effect of SRC, especially when the cue is compatible with the stimulus; 5, The cue compatibility has two-fold meaning, the cue-stimulus compatibility and the cue-response compatibility, the former is stronger than the later when they compete each other. In summary, the compatibility, the basic feature of human information processing, is proved by the research, and the dimension overlap model and automatic activation hypothesis is tested by the studying on the cue compatibility.
Resumo:
A new kind of monolithic capillary electrochromatography column with poly(styrene-co-divinylbenzene-co-methacrylic acid) as the stationary phase has been developed. The stationary phase was found to be porous by scanning electron microscopy and the composition of the continuous bed was proved by IR spectroscopy to be the ternary polymer of styrene, divinylbenzene, and methacrylic acid. The effects of operating parameters, such as voltage, electrolyte, and organic modifier concentration in the mobile phase on electroosmotic flow were studied systematically, The retention mechanism of neutral solutes on such a column proved to be similar to that of reversed-phase high performance liquid chromatography. In addition, fast analyses of phenols, chlorobenzenes, anilines, isomeric compounds of phenylenediamine and alkylbenzenes within 4.5 min were achieved.
Resumo:
A novel norvancomycin-bonded chiral stationary phase (NVC-CSP) was synthesized by using the chiral selector of norvancomycin. The chiral separation of enantiomers of several dansyl-amino acids by high-performance liquid chromatography (HPLC) in the reversed-phase mode is described. The effects of some parameters, such as organic modifier concentration, column temperature, pH and flow rate of the mobile phase, on the retention and enantioselectivity were investigated. The study showed that ionic, as well as hydrophobic interactions were engaged between the analyte and macrocycle in this chromatographic system. Increasing pH of buffers usually improved the chiral resolution for dansyl-alpha-amino-n-butyric acid (Dns-But), dansyl-methionine (Dns-Met) and dansyl-threonine (Dns-Thr), but not for dansyl-glutamic acid (Dns-Glu) which contains two carboxylic groups in its molecular structure. The natural logarithms of selectivity factors (In alpha) of all the investigated compounds depended linearly on the reciprocal of temperature (1/T), most processes of enantioseparation were controlled enthalpically. Interestingly, the process of enantioseparation for dansyl-threonine was enthalpy-controlled at pH of 3.5, while at pH of 7.0, it was entropy-controlled according to thermodynamic parameters Delta(R,S)DeltaHdegrees and Delta(R,S)DeltaSdegrees afforded by Van't Hoff plots. In order to get baseline separation for all the solutes researched, norvancomycin was also used as a chiral mobile phase additive. In combination with the NVC-CSP remarkable increases in enanselectivity were observed for all the compounds, as the result of a "synergistic" effect. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
An empirical equation is proposed to accurately correlate isothermal data over a wide range of temperature With the equation ln k = A* + B*/T-lambda the retention times of different solutes tested on OV-101, SE-54 and PEG 20M capillary columns have been achieved even when lambda is assigned a constant value of 1.7 Comparison with ln k = A + B/T and in k = c + d/T+ h/T-2, shows that the proposed equation is of higher accuracy and is applicable to extrapolation calculation, especially from data at high temperature to those at low temperature. Parameters A* and B* as well as A and B are also discussed. The linear correlation of A* and B* is weaker than that of A and B.
Resumo:
The soil organic partition coefficient (K-oc) is one of the most important parameters to depict the transfer and fate of a chemical in the soil-water system. Predicting K-oc by using a chromatographic technique has been developing into a convenient and low-cost method. In this paper, a soil leaching column chromatograpy (SLCC) method employing the soil column packed with reference soil GSE 17201 (obtained from Bayer Landwirtschaftszentrum, Monheim, Germany) and methanol-water eluents was developed to predict the K-oc of hydrophobic organic chemicals (HOCs), over a log K-oc range of 4.8 orders of magnitude, from their capacity factors. The capacity factor with water as an eluent (k(w)') could be obtained by linearly extrapolating capacity factors in methanol-water eluents (k') with various volume fractions of methanol (phi). The important effects of solute activity coefficients in water on k(w)' and K-oc were illustrated. Hence, the correlation between log K-oc and log k(w)' (and log k') exists in the soil. The correlation coefficient (r) of the log K-oc vs. log k(w)' correlation for 58 apolar and polar compounds could reach 0.987, while the correlation coefficients of the log K-oc-log k' correlations were no less than 0.968, with phi ranging from 0 to 0.50. The smaller the phi, the higher the r. Therefore, it is recommended that the eluent of smaller phi, such as water, be used for accurately estimating K-oc. Correspondingly, the r value of the log K-oc-log k(w)' correlation on a reversed-phase Hypersil ODS (Thermo Hypersil, Kleinostheim, Germany) column was less than 0.940 for the same solutes. The SLCC method could provide a more reliable route to predict K-oc indirectly from a correlation with k(w)' than the reversed-phase liquid chromatographic (RPLC) one.
Resumo:
This paper presents the development of a mini-electrochemical detector for microchip electrophoresis. The small size (3.6 x 5.0 cm(2), W x L) of the detector is compatible with the dimension of the microchip. The use of universal serial bus (USB) ports facilitates installation and use of the detector, miniaturizes the detector, and makes it ideal for lab-on-a-chip applications. A fixed 10 M Omega feedback resistance was chosen to convert current of the working electrode to voltage with second gain of 1, 2, 4, 8, 16, 32, 64 and 128 for small signal detection instead of adopting selectable feedback resistance. Special attention has been paid to the power support circuitry and printed circuit board (PCB) design in order to obtain good performance in such a miniature size. The working electrode potential could be varied over a range of +/-2.5 V with a resolution of 0.01 mV. The detection current ranges from -0.3 x 10(-7) A to 2.5 x 10(-7) A and the noise is lower than 1 pA. The analytical performance of the new system was demonstrated by the detection of epinephrine using an integrated PDMS/glass microchip with detection limit of 2.1 mu M (S/N = 3).
Resumo:
Based on the mass balance equations of solute transfer in the radial chromatographic column, the theoretical expression to describe the column efficiency and shape of elution profile is obtained under linear isotherm case. Moreover, the tendency for the variation of column efficiency and symmetry of peak profile is systematically discussed. The results showed that in radial chromatography the relationship between the column efficiency and volumetric flow rate is similar with that relationship in axial chromatography; relatively high column efficiency still can be obtained under high flow rate in radial chromatography. Accompanying the increase of retention factor of solutes and injection time, the column efficiency decreases monotonously. The effect of column diameter and column length on the column efficiency interfere with each other. It is more advantageous to increase the column efficiency by applying columns with larger column diameter and shorter column length. According to the discussion of the effect of diffusion on the column efficiency, radial chromatography is proved to be suitable for the separation of samples with relatively high diffusion coefficient, which predicts its obvious advantage in the preparative separation of samples such as proteins and DNA.
Resumo:
A novel hybrid organic-inorganic silica-based monolithic column possessing phenyl ligands for reversed-phase (RP) capillary electrochromatography (CEC) is described. The monolithic stationary phase was prepared by in situ co-condensation of tetraethoxysilane (TEOS) with phenyltriethoxysilane (PTES) via a two-step catalytic sol-gel procedure to introduce phenyl groups distributed throughout the silica matrix for chromatographic interaction. The hydrolysis and condensation reactions of precursors were chemically controlled through pH variation by adding hydrochloric acid and dodecylamine, respectively. The structural property of the monolithic column can be easily tailored through adjusting the composition of starting sol solution. The effect of PTES/TEOS ratios on the morphology of the created stationary phases was investigated. A variety of neutral and basic analytes were used to evaluate the column performance. The CEC columns exhibited typical RP chromatographic retention mechanism for neutral compounds and had improved peak shape for basic solutes.
Resumo:
A capillary zone electrophoresis (CZE) method has been developed for investigating the physicochemical characteristics of five Strychnos alkaloids in Strychnos nux-vomica L. Firstly, the dissociation constants of the five Strychnos alkaloids were determined, based on the relation between the effective mobility of the solutes and the buffer pH. The mathematical relationship was strictly deduced from the fundamental electrophoretic theory and the dissociation equilibrium. Secondly, an equation describing the relation between the migration time of alkaloids of similar structure and their molecular weights was developed and used to predict the migration order and to calculate the electrosomotic velocity. The results predicted by the theory agreed with those from experiments.
Resumo:
A monolithic enzymatic microreactor was prepared in a fused-silica capillary by in situ polymerization of acrylamide, glycidyl methacrylate (GMA) and ethylene dimethacrylate (EDMA) in the presence of a binary porogenic mixture of dodecanol and cyclohexanol, followed by ammonia solution treatment, glutaraldehyde activation and trypsin modification. The choice of acrylamide as co-monomer was found useful to improve the efficiency of trypsin modification, thus, to increase the enzyme activity. The optimized microreactor offered very low back pressure, enabling the fast digestion of proteins flowing through the reactor. The performance of the monolithic microreactor was demonstrated with the digestion of cytochrome c at high flow rate. The digests were then characterized by CE and HPLC-MS/MS with the sequence coverage of 57.7%. The digestion efficiency was found over 230 times as high as that of the conventional method. in addition, for the first time, protein digestion carried out in a mixture of water and ACN was compared with the conventional aqueous reaction using MS/MS detection, and the former solution was found more compatible and more efficient for protein digestion.