141 resultados para Algorithm Calibration
Resumo:
A 3 T superconducting magnet with a 70 mm diameter warm bore and energy storage of 47 kJ has been successfully fabricated and tested, which can be used to calibrate Hall sensors in high magnetic field as well as conduct superconducting experiments. The magnet consists of three solenoid coils and an iron yoke. The homogeneity of the magnetic field in the region of interest (ROI) is +/- 6.0 x 10(-5). The coils of the magnet were fabricated with NbTi-Cu superconducting wire and the stray magnetic field is shielded by an iron yoke. The coils and yoke are fully immersed in a helium vessel. The optimized structural design, stress and quench simulation, fabrication and test results are presented in this paper.
Resumo:
An optimization method based on uniform design in conjunction with genetic algorithm is described. According to the proposed method, the uniform design technique was applied to the design of starting experiments, which can reduce the number of experiments compared with traditional simultaneous methods, such as simplex. And genetic algorithm was used in optimization procedure, which can improve the rapidity of optimal procedure. The hierarchical chromatographic response function was modified to evaluate the separation equality of a chromatogram. An iterative procedure was adopted to search for the optimal condition to improve the accuracy of predicted retention and the quality of the chromatogram. The optimization procedure was tested in optimization of the chromatographic separation of 11 alkaloids in reversed-phase ion pair chromatography and satisfactory optimal result was obtained. (C) 2003 Elsevier B.V. All rights reserved.
New uniform algorithm to predict reversed phase retention values under different gradient conditions
Resumo:
A new numerical emulation algorithm was established to calculate retention parameters in RP-HPLC with several retention times under different linear or nonlinear binary gradient elution conditions and further predict the retention time under any other binary gradient conditions. A program was written according to this algorithm and nine solutes were used to test the program. The prediction results were excellent. The maximum relative error of predicted retention time was less than 0.45%. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
A method for calibration of an audio-frequency (AF) ion trap mass spectrometer is described. The method is proposed to surmount the obstacle that there is a lack of a proper calibrant for mass spectrometers in the mass-to-charge ratio (m/z) range of 10(6) to 10(10). To calibrate such mass spectra, we determine the point of ejection, q(eject), on the stability diagram of the ion trap operated in a mass-selective axial instability mode. This is accomplished by measuring the radial secular frequencies (and therefore, the m/z value) of a single trapped particle using a light scattering method, followed by monitoring the action of particle ejection in real time to obtain the q(eject). A delayed ejection with q(eject) = 0.949 +/- 0.004 is found at a trap driving frequency of Ohm/2pi = 200-600Hz. Theoretical analysis for the origin of the delayed ejection indicates that the delay is predominantly resulted from the existence of multipole components in the fields due to trap imperfections. Inclusion of -3% of the octopole with respect to the basic quadrupole field can satisfactorily account for our observations. An m/z accuracy approaching 0.1% is attainable after proper calibration of the AF ion trap mass spectrometer. (Int J Mass Spectrom 214 (2002) 63-73) (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
A new algorithm has been developed for simultaneous retrieval of aerosol optical properties and chlorophyll concentrations in case I waters. This algorithm is based on an improved complete model for the inherent optical properties and accurate simulations of the radiative transfer process in the coupled atmosphere-ocean system. It has been tested against synthetic radiances generated for the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) channels and has been shown to be robust and accurate. A unique feature of this algorithm is that it uses the measured radiances in both near-IR and visible channels to find that combination of chlorophyll concentration and aerosol optical properties that minimizes the error across the spectrum. Thus the error in the retrieved quantities can be quantified.
Resumo:
It is shown that near-Nernstian calibration slopes can be obtained with a Cu1.8Se electrode in a range of cupric ion buffers in spite of a high chloride content. Best results are obtained with the ligands ethylenediamine, glycine and histidine. The onset of cupric ion toxicity towards marine organisms falls within the pCu calibration range obtained with glycine, and the Cu1.8Se electrode could, therefore, be useful for monitoring cupric ion activity in bioassays in sea-water media.
Resumo:
The procedure adopted by the Standard Seawater Service for the calibration of Standard Seawater in electrical conductivity relative to a defined potassium chloride solution is described
Resumo:
针对现有时间同步协议在能耗和通信负载方面存在的不足,提出了一种周期同步和自动校准相结合的时间同步算法SLTS.该算法的周期同步采用预告消息机制来实现,而自动校准则是在周期同步的间歇期间,各节点根据晶体振荡器的频率特性来修正自己的逻辑时间,尽可能与标准时间保持一致,从而延长周期同步的时间间隔.实验结果表明SLTS算法可以在保证用户精度需求的前提下大幅降低同步算法的执行频率,在能耗和通信负载方面具有较好的性能.
Resumo:
Chinese Acad Sci, ISCAS Lab Internet Software Technologies