160 resultados para 20-GC 2


Relevância:

80.00% 80.00%

Publicador:

Resumo:

岷江上游干旱河谷区水土流失强烈,地质灾害频繁,生态环境十分脆弱,而土壤条件恶劣(水分不足和养分缺乏)是阻碍该区植被恢复的关键因子,因此研究水分和乡土灌木生长对土壤的影响对该区的生态恢复具有指导意义。本文通过定点模拟实验,选取三种优势豆科灌木为研究对象,分别是白刺花(Sophora davidii)、小马鞍羊蹄甲(Bauhinia faberi var. microphylla)和小雀花(Campylotropics polyantha),设置5 个水分梯度,分别为100%、80%、60%、40%和20%田间持水量(FC),对栽种植物与不种植物下土壤理化性质和酶活性进行测定分析,系统比较和研究了不同水分条件和不同乡土灌木生长对干旱河谷区土壤结构、养分循环、酶活性以及微生物量的影响。主要结果如下:1. 无论生长植物与否,土壤的毛管持水量和毛管孔隙度都随着水分含量的减少而降低,最大持水量、总孔隙度和容重变化不大,相应地,土壤中的非毛管孔隙随含水量的减少而升高。各水分条件下,种植植物的毛管持水量和毛管孔隙度低于无植物生长的土壤,非毛管孔隙度相应地高于无植物土壤。土壤含水量在100%-40% FC 时,三种豆科灌木的毛管持水量和毛管孔隙度存在差异,而20% FC 条件下,三种豆科灌木土壤的物理性质基本相同。2. 水分胁迫影响土壤中养分的矿化和积累,主要表现在降低了水溶性碳和铵态氮的含量,中等程度胁迫时(60% FC)促进了有机碳和硝态氮的富集,对速效钾和有效磷没有明显作用。种植豆科灌木后各水分梯度上都增加了有机碳、铵态氮、速效钾和有效磷的积累。增加程度上三种豆科灌木间有一定差异,对于土壤有机碳总量,种植白刺花和小马鞍羊蹄甲明显高于小雀花,同样的情况还出现在铵态氮和速效钾上,但是对于有效磷,种植小雀花后的增加程度则明显高于白刺花和小马鞍羊蹄甲。种植豆科灌木不仅增加了土壤养分的相对含量,也改变了其在水分梯度上的变化趋势及其变化幅度,这种作用主要体现在碳元素和氮元素上。3. 无植物生长时脲酶活性随水分含量的减少而升高,水分胁迫对磷酸酶和过氧化氢酶的作用不显著,蔗糖酶也保持在相对较高的水平。种植植物后,蔗糖酶、磷酸酶活性与无植物时相比有较大幅度的提高,种植白刺花的脲酶活性也升高,其升高的程度在不同水分含量时不同。种植植物还降低了酶活性在水分梯度上的变幅,使之在水分梯度间的差异显著性降低。脲酶活性在指示土壤性质改变方面是较敏感的指标,其它三种酶在不同植物间的差异不明显。4. 在无植物生长时,中等程度的水分胁迫(60% FC)提高了土壤微生物量碳含量,过高或过低的土壤水分均不利于微生物碳的积累。种植小马鞍羊蹄甲后微生物量碳在水分梯度上的变化趋势与无植物生长时一致,而种植白刺花和小雀花后微生物量碳随着水分含量的减少而降低。不同种类植物的微生物量碳在水分梯度上的变化特征也不同,100% FC 条件下三种植物间没有差异,80%和60% FC 条件下小马鞍羊蹄甲显著高于白刺花和小雀花,40%和20% FC 条件下白刺花和小马鞍羊蹄甲也显著高于小雀花,说明不同种类植物随着干旱胁迫程度的加深微生物量碳的降低幅度不同,在极度干旱时,白刺花和小马鞍羊蹄甲土壤依然保持了较高的微生物活性,而小雀花土壤微生物量则明显下降。The dry valley of the upper reaches of the Minjiang River is seriously degradedmountain ecosystem. It was endangered by extremely soil lost and frequentlygeological disaster. Previous studies showed that short of water and nutrients in soilwas the principal limiting factors of vegetation restoration in this area. The typical soiland three dominant leguminous shrubs Sophora davidii, Bauhinia faberi var.microphylla and Campylotropics polyantha in upper reaches of arid Minjiang Rivervalley were considered as experimental material. Two-month old seedlings of eachspecies were exposed to five water supplies (100%, 80%, 60%, 40% and 20% waterfield capacity (FC)) in a temperature and light-controlled greenhouse. Afterthree-month water treatment, soil physiochemical variables and soil microbialactivities were determined by conventional methods. The main results showed that:1. Soil capillary capacity and capillary porosity decreased along water supplyregimes in all treatments, while saturated water capacity, total porosity and bulkdensity kept in a relatively stable level, as a result, the non-capillary porosity andcapacity increased with decrease of water supply. Compared to non-planted soil, theplant-soil systems had a higher non-capillary porosity and capacity, suggestingappropriate oxygen was present in soil to maintain the living of microorganism. Soilof three type shrub species shared the same capillary capacity and capillary porosityunder 20% FC.2. Water soluble carbon and NH4+-N decreased in response to water stress, whiletotal organic carbon and NO3--N promoted by moderate water stress and inhibited by 100% and 20% FC. Total organic carbon, NH4+-N, rapidly available K and availableP increased after the planting of leguminous shrubs in five water supply regimescompared to non-planted soil. For TOC, NH4+-N and rapidly available K, thepromotion effect was higher in S. davidii and B. faberi var. microphylla than C.polyantha planted soil, while available P displayed the opposite side. The planting ofshrubs also reduced the variance of observed traits along water supply gradients.3. Drought stress increased urease activity in non-planted soil, while insignificantdifferences were observed in phosphatase and catalase activity among five watersupply regimes. The planting of leguminous shrubs facilitated the β-glucosidase andphosphatase activity compared to the non-planted soil. It also reduced the variance ofenzyme activity along water supply gradients. Urease was more sensitive to waterstress than other three enzymes.4. Soil water content significantly affected microbial biomass carbon andCmic:Corg. S. davidii and B. faberi var. microphylla showed more drought toleranceability than C. polyantha, attributing not only to their relatively smaller variance ofmicrobial biomass carbon along soil water supply gradients, but also to the highlevel of microbial activity under severe water stress. S. davidii and B. faberi var.microphylla benefited reproduction of soil microorganism at 60%-80% FC, whilesevere drought limited it due to the competition of water and nutrients between plantand soil microorganism.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

瑞香狼毒(Stellera chamaejasme L.)是瑞香科(Thymelaeaceae)狼毒属的一种多年生野草,有毒。据调查,从20 世纪60 年代开始至今,狼毒在青藏高原东缘的高寒草甸上不断蔓延、密度不断变大,在一些地段甚至成为优势物种。有关狼毒在高寒草甸蔓延的生态系统效应的研究尚未见报道。本文从系统碳、氮循环的角度,分别研究狼毒在生长和非生长季节对高寒草甸生态系统的影响。同时,从花粉化感的角度,深入研究狼毒对当地同花期物种有性繁殖的影响。系统地研究高寒草甸生态系统物质循环过程,特别是非生长季节微生物和土壤碳氮库的动态变化,有助于揭示狼毒在系统物质循环方面的“物种效应”以及这种效应的季节变化,为丰富有关高海拔生态系统,特别是其非生长季的物质循环的科学理论做出贡献。同时,碳氮循环和花粉化感的研究还有助于深刻地理解狼毒作为一种入侵性很强的杂草的特殊的蔓延机制,从而为狼毒的有效防治、高寒草甸的科学管理提供依据。 针对狼毒在青藏高原高寒草甸上蔓延的生态系统碳氮循环方面的影响,开展以下2 方面的研究:(1)在生长季,研究松潘县尕米寺附近(北纬32°53',东经103°40',海拔3190 m)的两种地形(平地和阳坡)条件下狼毒对土壤碳氮循环影响及可能的原因。狼毒和其它几个主要物种(圆穗蓼(Polygonummacrophyllum D. Don var. Macrophyllum),草地早熟禾(Poa pretensis L.),四川嵩草(Kobresia setchwanensis Hand.-Maizz.),鹅绒委陵菜(Potentilla anserina L.var. anserine)和鳞叶龙胆(Gentiana squarrosa Ledeb.)的地上凋落物产量以及地上凋落物和根的化学组成被测量。在有-无狼毒斑块下,各种土壤的库(比如,铵态氮、硝态氮、无机磷和微生物生物量)和周转率(包括净矿化、净硝化、总硝化、反硝化和微生物呼吸速率)被测量和比较。(2)在非生长季节,尤其是春季冻融交替期,选取了两个研究地点——尕米寺和卡卡沟(北纬32°59',东经103°41',海拔3400 m),分别测定有狼毒和无狼毒斑块下土壤微生物生物量碳和氮、可溶性有机碳和氮以及铵态氮和硝态氮的动态变化。同时,分别在上述两个地点有-无狼毒的样地上,研究6 个主要物种(狼毒、圆穗蓼、草地早熟禾、四川嵩草、鹅绒委陵菜和鳞叶龙胆)从秋季开始、为期1 年的凋落物分解过程。 针对狼毒花粉化感对同花期其它物种可能的花粉化感作用开展以下工作:在实验室中,用一系列浓度的狼毒花粉水浸提液对与它同花期的其它物种以及自身花粉进行测试,测定花粉萌发率;在野外自然条件下的其它物种的柱头上施用上述浓度的狼毒花粉水浸提液,观测种子结实率,同时,观察狼毒花粉的种间花粉散布数量。 生长季节的研究结果表明,狼毒地上凋落物氮含量比其它几个主要物种更高,而木质素-总氮比更低。狼毒显著地增加其斑块下表层土壤中有机质的含量,而有-无狼毒的亚表层土壤在有机碳和总磷方面没有显著差异。狼毒表土中硝态氮含量在平地和阳坡比无狼毒土壤分别高113%和90%。狼毒表土中微生物生物量碳和氮量显著高于无狼毒表土。无论是平地还是阳坡,狼毒土壤的总硝化和微生物呼吸速率显著高于无狼毒土壤;而它们的反硝化速率只在平地有显著的差异。狼毒与其它物种间地上凋落物的产量和质量的差异可能是导致有-无狼毒土壤碳氮循环差异的原因。我们假设,狼毒可能通过增加贫氮生态系统土壤中的有效氮含量提高其入侵能力。 非生长季的研究结果表明,在青藏高原东缘的高寒草甸上,土壤微生物生3物量在11 月的秋-冬过渡期达到第一个峰值;在春季的冻融交替期,微生物生物量达到第二个峰值后又迅速降低。无机氮以及可溶性有机碳氮与微生物生物量有相似的变化过程。微生物碳氮比呈现显著的季节性变化。隆冬季节的微生物生物量碳氮比显著高于生长旺季的微生物碳氮比。这种变化可能暗示冬、夏季微生物的群落组成和对资源的利用有所不同。有-无狼毒斑块下土壤微生物和土壤碳、氮库一般只在秋-冬过渡期有显著差异,有狼毒土壤微生物生物量和土壤碳、氮库显著高于无狼毒土壤;而在之后的冬季和春季没有显著差异。所有6 个物种凋落物在非生长季分解率为24%-50%,均高于生长季的10%到30%。其中在秋-冬过渡期,凋落物开始埋藏的两周时间内,分解最快,达10%-20%。不同物种凋落物全年的分解率和分解过程有显著差异。圆穗蓼在全年的分解都较缓慢(非生长季26%,生长季15%),草地早熟禾和四川嵩草等全年的分解速率比较均匀(非生长季和生长季均为30%,非生长季略高),而狼毒在非生长季分解较快(约50%),而在接下来的生长季分解变得缓慢(约12%)。所有物种的凋落物氮含量在非生长季下降,而在随后的生长季上升。 实验室的花粉萌发试验证明,狼毒花粉对自身花粉萌发没有自毒作用,而其它受试的所有物种(圆穗蓼,秦艽(Gentiana macrophylla Pall. var. fetissowii),湿生扁蕾(Gentianopsis paludosa (Hook. f.) Ma var. paludosa),鳞叶龙胆,椭圆叶花锚(Halenia elliptica D. Don var. elliptica),蓝钟花(Cyananthus hookeri C. B.Cl. var. grandiflorus Marq.),小米草(Euphrasia pectinata Ten.),川西翠雀花(Delphinium tongolense Franch.),高原毛茛(Ranunculus tanguticus (Maxim.)Ovcz. var. tanguticus)和鹅绒委陵菜)的花粉萌发率随着狼毒花粉浸提液浓度的增加呈显著的非线性降低。大约3 个狼毒花粉的浸提液就可以抑制受试的多数物种的50%的花粉萌发。在鳞叶龙胆和小米草柱头上狼毒花粉的数量分别为5.76 个和3.35 个。狼毒花粉散布数量的差异最可能的原因在于是否有共同的传粉昆虫。花的形状(辐射对称VS 左右对称)、植株或花的密度以及花期重叠性可以部分解释这种差异。在野外试验中,我们发现6 个物种(秦艽、湿生扁蕾、鳞叶龙胆、椭圆叶花锚、蓝钟花和小米草)的种子结实率随狼毒花粉浸提液浓度的增加呈显著的非线性降低。鳞叶龙胆和小米草柱头上狼毒花粉的数量(分别是5.76 个和3.35 个)分别达到了抑制它们63%和55%种子结实率的水平。因此,狼毒对鳞叶龙胆和小米草可能存在明显的花粉化感抑制作用。狼毒周围的物种可能通过花期在季节或昼夜上的分异避免受到狼毒花粉化感的影响或者通过无性繁殖来维持种群繁衍,因此狼毒通过花粉化感作用对其周围物种繁殖的影响程度还需要进一步地研究。如果狼毒的花粉化感抑制作用确实存在,那么它可能成为一种自然选择压力,进而影响物种的进化。 Stellera chamaejasme L., a perennial toxic weed, has emerged and quicklydominated and spread in the high-frigid meadow on the eastern Tibetan Plateau ofChina since the 1960s. In the present study, effects of S. chamaejasme on carbon andnitrogen cycles on the high-frigid meadow on the eastern Qinghai-Tibetan Plateau ingrowing and non-growing season, and its pollen allelopathic effects on the sympatricspecies were determined. The present study that focused on carbon and nitrogencycles, especially on microbial biomass and pools of carbon and nitrogen innon-growing season, could profoundly illuminate plant-species effects on carbon andnutrient cycles and its seasonal pattern and help to understand spread mechanism ofS. chamaejasme as an aggressive weed. The present study also contributed to furtherunderstand carbon and nutrient cycles on alpine regions in non-growing season andprovide a basis on weed control of S. chamaejasme and scientific management in thehigh-frigid ecosystem. Effects of S. chamaejasme on carbon and nitrogen cycles on the high-frigidmeadow on the eastern Qinghai-Tibetan Plateau were determined. The study couldbe divided into two parts. (1) In the growing season, we quantified the effects of S.chamaejasme on carbon and nitrogen cycles in two types of topographic habitats, theflat valley and the south-facing slope, where S. chamaejasme was favored to spreadlitter and root were measured to explain the likely effects of S. chamaejasme on soilcarbon and nutrient cycles. The sizes of various soil pools, e.g. nitrite, ammonium,inorganic phosphorus and microbial biomass, and turnover rates including netmineralization, gross nitrification, denitrification and microbial respiration weredetermined. (2) In the non-growing season study, microbial biomass carbon andnitrogen, soluble organic carbon and nitrogen, ammonium and nitrate weredetermined through the non-growing season, especially in the processes offreeze-thaw of spring in two high-frigid sites, i.e. Kaka valley and Gami temple, onthe eastern Qinghai-Tibetan Plateau. Meanwhile, litter decomposition of six commonspecies, including Stellera chamaejasme L., Polygonum macrophyllum D. Don var.Macrophyllum, Poa pretensis L., Kobresia setchwanensis L., Potentilla anserina L.var. anserine and Gentiana squarrosa Ledeb., were also examined under theabove-mentioned experimental design through one whole-year, which began in theautumn in 2006. In the study of pollen allelopathy, several work, including in vitro study oneffects of extract of pollen from S. chamaejasme on sympatric species and pollenfrom itself, field experiments on effects of pollen extract with the same regime ofconcentrations on seed set and field observation on heterospecific pollen transfer ofS. chamaejasme to six of those sympatric species has been done. The results in the growing season showed that aboveground litter of S.chamaejasme had higher tissue nitrogen and lower lignin: nitrogen ratio than thoseco-occurring species. S. chamaejasme significantly increased topsoil organic matter,whereas no significant differences were found for organic C and total P in subsoilbetween under-Stellera and away-Stellera locations. The nitrate in Stellera topsoilwas 113% and 90% higher on the flat valley and on the south-facing slope,respectively. Both microbial biomass C and N were significantly higher in Stelleratopsoil. Gross nitrification and microbial respiration were significantly higher inStellera topsoil both on the flat valley and on the south-facing slope, whereassignificant differences of denitrification were found only on the flat valley. Thedifferences in the quantity and quality of aboveground litter are a likely mechanismresponsible for the changes of soil variables. We assumed that S. chamaejasme couldenhance their spread by increasing nutrient availability in N-deficient ecosystems. The results in the non-growing season showed that microbial biomass achievedthe first summit in late autumn and early winter on the eastern Qinghai-TibetanPlateau. In the stages of freeze-thaw of spring, microbial biomass firstly achieved thesecond summit and subsequently sharply decreased. Inorganic nitrogen, solubleorganic carbon and nitrogen had a similar dynamics with that of microbial biomass.Ratio of microbial biomass carbon and nitrogen had an obviously seasonal pattern.The highest microbial C: N were in the non-growing season, which weresignificantly higher than those in the growing season. The seasonal pattern inmicrobial biomass C: N suggested that large changes in composition of microbialpopulation and in resources those used by microbes between summer and winter.Generally, microbial biomass and pools size of carbon and nitrogen in Stellera soilwere significantly higher than those under adjacent locations in late autumn andearly winter, but there were not significant differences in winter and in spring. Litterof all the focal species (Stellera chamaejasme L., Polygonum macrophyllum D. Donvar. Macrophyllum, Poa pretensis L., Kobresia setchwanensis Hand.-Maizz.,Potentilla anserina L. var. anserine and G. squarrosa Ledeb.) decomposed about24%-50% in the non-growing season, which were higher than those in the growingseason (ranged from 10% to 30%). Litter decomposed 10%-20% within the first twoweeks in late autumn and early winter. Significant differences in the whole-yeardecomposition rate and in the processes of decomposition were found among species.Polygonum macrophyllum decomposed slowly through the whole year (26% and15% in the non-growing season and in the growing season, respectively). Certainspecies, such as P. pretensis L. and K. setchwanensis, decomposed at a similar rate(30% both in the non-growing and in the growing season, slightly higher in the8growing season than those in the growing season), whereas S. chamaejasmedecomposed more rapidly (about 50%) in the non-growing season and subsequentlydecomposition became slow (about 12%) in the growing season. Litter nitrogencontents of all the focal species firstly decreased in the non-growing season and thenincreased in the growing season. In vitro experiments of pollen allelopathy, the results showed that pollen from S.chamaejasme was not autotoxic, whereas pollen germination in all the sympatricspecies (Polygonum macrophyllum D. Don var. Macrophyllum, Gentianamacrophylla Pall. var. fetissowii, Gentianopsis paludosa (Hook. f.) Ma var. paludosa,Gentiana squarrosa Ledeb., Halenia elliptica D. Don var. elliptica, Cyananthushookeri C. B. Cl. var. grandiflorus Marq., Euphrasia pectinata Ten., Delphiniumtongolense Franch., Ranunculus tanguticus (Maxim.) Ovcz. var. tanguticus andPotentilla anserina L. var. anserina) decreased nonlinearly as the increasingconcentrations of extract of pollen from S. chamaejasme. Pollen Extract of threepollens from S. chamaejasme generally inhibited 50% pollen germination of most ofthe focal species. 5.76 and 3.35 pollens from S. chamaejasme were observed in fieldon stigmas of G. squarrosa and E. pectinata, respectively. Differences inheterospecific pollen transfer of S. chamaejasme could be attributed to the primaryreason whether they shared common pollinators. Flower morphology (e.g.zygomorphic or actinomorphic), plant or floral density and concurrence in floweringphonologies could explain, in part, the differences in heterospecific pollen transfer.In field experiments, the results showed that seed set in six sympatric species(Gentiana macrophylla Pall. var. fetissowii, Gentianopsis paludosa (Hook. f.) Mavar. paludosa, Gentiana squarrosa Ledeb., Halenia elliptica D. Don var. elliptica,Cyananthus hookeri C. B. Cl. var. grandiflorus Marq. and Euphrasia pectinata Ten.)decreased nonlinearly as the increasing concentrations of extract of pollen from S.chamaejasme. According to the nonlinear curves, the amounts of pollens from S.chamaejasme on stigmas of G. squarrosa and of E. pectinata (i.e. 5.76 grains and3.35 grains, respectively) could reduce 63% and 55% seed set of G. squarrosa and ofE. pectinata, respectively. Thus, allelopathic effects of S. chamaejasme on G.squarrosa and E. pectinata could be realistic. The sympatric species of S.chamaejasme could avoid pollen allelopathy of S. chamaejasme to sustainthemselves. This highlights the need to study how much pollen allelopathy in S.chamaejasme influences the sympatric species through divergence in seasonal ordiurnal flowering phonologies or through asexual reproduction. If pollen allelopathyin S. chamaejasme was confirmed, it could be as a pressure of natural selection andthus play an important role in species evolution.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

干旱环境常常由于多变的降水事件和贫瘠土壤的综合作用,表现出较低的生产力和较低的植被覆盖度。全球性的气候变暖和人类干扰必将使得干旱地区缺水现状越来越严竣。贫瘠土壤环境中已经很低的有效养分含量也将会随着干旱的扩大而越来越低。干旱与半干旱系统中不断加剧的水分与养分的缺失将严重限制植物的生长和植被的更新,必然会使得已经恶化的环境恶化速率的加快、恶化范围的加大。如何抑制这种趋势,逐步改善已经恶化的环境是现在和将来干旱系统管理者面临的主要关键问题。了解干旱系统本土植物对未来气候变化的适应机制,不仅是植物生态学研究的重要内容,也对人为调节干旱环境,改善干旱系统植被条件,提高植被覆盖度具有重要的实践意义。 本研究以干旱河谷优势灌木白刺花(Sophora davidii)为研究对象,通过两年大棚水分和施N控制实验和一个生长季野外施N半控制实验,从植物生长-生理-资源利用以及植物生长土壤环境特征入手,系统的研究了白刺花幼苗生长特性对干旱胁迫和施N的响应与适应机制,并试图探讨施N是否可调节干旱系统土壤环境,人工促进干旱条件下幼苗定居,最终贡献于促进植被更新实践。初步研究结论如下: 1)白刺花幼苗生长、生物量积累与分配以及水分利用效率对干旱胁迫和施N处理的适应白刺花幼苗株高、基径、叶片数目、叶面积、根长、生物量生产、相对含水量和水分利用效率随着干旱胁迫程度的增加而明显降低,但地下部分生物量比例和R/S随着干旱胁迫程度的增加而增加。轻度施N处理下幼苗株高、基径、叶片数目、叶片面积和生物量生产有所增加。但重度施N处理下这些生长指标表现出微弱甚至降低的趋势。严重干旱胁迫条件下,幼苗叶面积率、R/S、相对含水量和水分利用效率也以轻度施N处理为最高。 2)白刺花幼苗叶片光合生理特征对干旱胁迫和施N处理的适应叶片光合色素含量和叶片光合效率随着干旱胁迫程度的增加而显著降低,并且PS2系统在干旱胁迫条件下表现出一定程度的光损害。但是比叶面积随着干旱胁迫程度的增加而增加。在相对较好水分条件下幼苗净光合速率的降低可能是因为气孔限制作用,而严重干旱胁迫条件下非气孔限制可能是导致幼苗叶片光合速率下降的主要原因。叶片叶绿素含量、潜在光合能力、羧化效率、光合效率以及RUBP再生能力等在施N处理下得到提高,并因而改善干旱胁迫条件下光合能力和效率。虽然各荧光参数对施N处理并无显著的反应,但是干旱胁迫条件下qN和Fv/Fm在轻度施N处理下维持相对较高的水平,而两年连续处理后在严重干旱胁迫条件下幼苗叶片光合效率受到重度施N处理的抑制,并且Fv/Fm和qN也在重度施N处理下降低。 3)白刺花幼苗C、N和P积累以及N、P利用效率对干旱胁迫和施N处理的适应白刺花幼苗C、N和P的积累,P利用效率以及N和P吸收效率随干旱胁迫程度的增加而显著降低,C、N和P的分配格局也随之改变。在相同水分处理下,C、N和P的积累量、P利用效率以及N和P吸收效率在轻度施N处理下表现为较高的水平。然而,C、N和P的积累量和P利用效率在重度施N处理下不仅没有表现出显著的正效应,而且有降低的趋势。另外,在相同水分条件下白刺花幼苗N利用效率随着施N强度的增加而降低。 4)白刺花幼苗生长土壤化学与微生物特性对干旱胁迫和施N的适应白刺花幼苗生长土壤有机C、有效N和P含量也随干旱胁迫程度的增加而明显降低。干旱胁迫条件下土壤C/N、C/P、转化酶、脲酶和碱性磷酸酶活性的降低可能表明较低的N和P矿化速率。尽管微生物生物量C、N和P对一个生长季干旱胁迫处理无显著反应,但微生物生物量C和N在两年连续干旱胁迫后显著降低。土壤有机C和有效P含量在轻度施N处理下大于重度施N处理,但是有效N含量随着施N强度的增加而增加。微生物生物量C和N、碱性磷酸酶和转化酶活性也在轻度施N处理下有所增加。但是碱性磷酸酶活性在重度施N处理下降低。 5)野外条件下白刺花幼苗生长特征及生长土壤生化特性对施N的适应植物生长、生物生产量、C的固定、N、P等资源的吸收和积累、其它受限资源的利用效率(如P)在轻度施N处理下均有所增加,但N利用效率有所降低。幼苗生物生产量及C、N和P等资源的分配格局在轻度施N处理下也没有明显的改变。白刺花幼苗叶片数目、生物生产量和C、N、P的积累量在重度施N处理下虽然也相对于对照有所增加,但幼苗根系长度显著降低。生物量及资源(生物量、C、N、P)在重度施N处理下较多地分配给地上部分(主要是叶片)。另外,土壤有机C、全N和有效N含量随外源施N的增加而显著增加,土壤pH随之降低,但土壤全P含量并无显著反应。其中有机C含量和有效P含量以轻度施N处理最高。微生物生物量C、N和P在轻度施N处理下也显著增加,而微生物生物量C在重度施N处理下显著降低。同时,转化酶、脲酶、碱性磷酸酶和中性磷酸酶活性在施N处理下也明显的提高,但酸性磷酸酶和过氧化氢酶活性显著降低,其中碱性磷酸酶和中性磷酸酶活性以轻度施N处理最高。 综合分析表明,干旱河谷水分和N严重限制了白刺花幼苗的生长。施N不能完全改变干旱胁迫对白刺花幼苗的抑制的作用,但是由于施N增加土壤N有效性,改善土壤一系列生物与化学过程,幼苗的生长特性也对施N表现出强烈的反应,表现为植物结构与资源分配格局的改善,植物叶片光合能力与效率的提高,植物生长以及利用其他受限资源(如水分和P)的效率的增加,致使植物自身生长及其生长环境在干旱环境下得到改善。但是过度施N不仅不能起到改善干旱胁迫下植物生长环境、促进植物生长的作用,反而在土壤过程以及植物生长过程中加重干旱胁迫对植物的伤害。因此,建议在采用白刺花作为先锋种改善干旱河谷系统环境的实践中,可适当施加N以改善土壤环境,调节植物利用与分配资源的效率,促进植物定居,得到人工促进种群更新的目的。但在实践过程中也要避免过度施N。 Arid regions of the world are generally noted for their low primary productivity which is due to a combination of low, unpredictable water supply and low soil nutrient concentrations. The most serious effects of global climate change and human disturbances may well be those which related to increasing drought since drought stress has already been the principal constraint in plant growth. The decline in total rainfall and/or soil water availability expected for the next decades may turn out to be even more drastic under future warmer conditions. Nevertheless, water deficit is not the only limiting factor in arid and semiarid environments. Soils often suffer from nutrient (especially N and P) deficiencies in these ecosystems, which can also be worsened by climate change. How to improve the poor soil quality and enhance the vegetation coverage is always the problem facing ecosystem managers. The adaptive mechanisms of native plant to future climate change is always the focus in plant ecology, it also plays important roles in improving vegetation coverage by manual controlled programmes. Sophora davidii is a native perennial shrub of arid valleys, which is often predominant on eroded slopes and plays a vital role in retaining ecological stability in this region. It has been found that S. davidii was better adapted to dry environment than other shrubs, prompting its use for re-vegetation of arid lands. A two-years greenhouse experiment and a field experiment were conducted in order to understand the adaptation responses of Sophora davidii seedlings to different water and N conditions, and further explore if additional N supply as a modified role could enhance the adaptation ability of S. davidii seedlings to dry and infertile environment. Two-month old seedlings were subjected to a completely randome design with three water (80%, 40% and 20% water field capacity (FC)) and three N supply (N0: 0, Nl: 92 and Nh: 184 mg N kg-1 soil) regimes. Field experiment was arranged only by three N supplies in the dry valley. 1) The growth, biomass partitioning and water-use efficiency of Sophora davidii seedlings in respond to drought stress and N supply Seedlings height, basal diameter, leaf number, leaf area, root length, biomass production, relative water content (RWC) and WUE were decreased with increase of drought stress. An increase in below-ground biomass was observed indicating a higher root/shoot ratio (R/S) under drought stress conditions. Low N supply increased seedlings height, basal diameter, leaf number, leaf area, and biomass production, but decreased root length. In contrast, these growth characteristics showed little or negative effect to high N supply treatment. Leaf percentages increased with increase of N supply, but fine root percentages decreased. In addition, Low N supply rather than the other two N treatments increased leaf area ratio (LAR), leaf/fine root mass ratio (L/FR), R/S and RWC under severe drought stress (20%FC), even though these parameters could increase with the high N supply treatment under well-watered condition (80%FC). Moreover, Low N supply also increased WUE under three water conditions, but high N supply had little effect on WUE under drought stress conditions (40%FC and 20%FC). 2) Leaf gas exchange and fluorescence parameters of Sophora davidii seedlings in respond to drought stress and N supply Leaf area (LA), photosynthetic pigment contents, and photosynthetic efficiency were decreased with increase of drought stress, but specific leaf area (SLA) increased. Photodamage in photosystem 2 (PS2) was also observed under drought stress condition. The decreased net photosynthetic rate (PN) under relative well-watered water conditions might result from stomatal limitations, but the decreased PN under other hand, photosynthetic capacity by increasing LA, photosynthetic chlorophyll contents, Pnmax, CE, Jmax were increased with increase N supply, and photosynthetic efficiency was improved with N supply treatment under water deficit. Although N supply did a little in alleviating photodamages to PS2 caused by drought stress, low N supply enhanced qN and kept relative high Fv/Fm under drought stress condition. However, high N supply inhibited leaf photosynthetic efficiency, and declined Fv/Fm and qN under severe drought stress condition after two year continues drought stress and N supply. 3) Carbon accumulation, nitrogen and phosphorus use efficiency of Sophora davidii seedlings in respond to drought stress and N supply C, N and P accumulation, NUE , N and P uptake efficiency (NUtE and NUtE ) P N P were decreased with increase of drought stress regardless of N supply. On the other hand, the S. davidii seedlings exhibited strong responses to N supply, but the responses were inconsistent with the various N supply levels. Low N supply rather than the other two N treatments increased C, N and P accumulation, improved NUEP, NUtE and NUtE under corresponding water condition. In contrast, high N supply N P did few even depressed effects on C, N and P accumulation, and NUEP, although NUtEN and NUtEP could increase with high N supply under corresponding water conditions. Even so, a decrease of NUEN was observed with increase of N supply under corresponding water conditions. 4) Soil microbial and chemical characters in respond to drought stress and N supply The content of soil organic C, available N and P were decreased with increase of drought stress. Decreases in C/N and C/P, and invertase, urea and alkaline phosphatase activity were also observed under drought stress conditions, indicating a lower N and P mineralization rate. Although microbial biomass C, N and P showed slight responses to drought stress after one growth period treatment, microbial biomass C and N were also decreased with increase of drought stress after two year continuous treatment. The content of soil organic C and available P showed the stronger positive responses to low N supply than which to high N supply, although than the other two N treatments increased microbial biomass N and invertase activity under severe drought stress condition, even though invertase activity could increase with high N supply treatment under relative well-water conditions. Moreover, low N supply treatment also increased C/P and alkaline phosphatase activity which might result from higher P mineralization, but high N supply did negative effects on alkaline phosphatase activity. 5) The growth characteristics of Sophora davidii seedlings and soil microbial and chemical characters in respond to N supply under field condition Low N supply facilitated seedlings growth by increasing leaf number, basal diameter, root length, biomass production, C, N and P accumulation and absorption, and enhancing the use efficiency of other limited resources as P. Compared to control, however, low N supply did little effect on altering biomass, C, N and P portioning in seedlings components. On the contrary, high N supply treatment also increased leaf number, biomass and C, N and P accumulation relative to control, but significantly decreased root length, and altered more biomass and resources to above-ground, which strongly reduced the ability of absorbing water under drought condition, and thus which might deep the drought stress. In addition, N supply increased soil C, N and available N content, but declined pH and showed little effects on P content. Low N supply showed higher values of soil C and available P content. Low N supply also increased microbial biomass C, N and P, although high N supply decreased microbial biomass C. N supply significantly enhanced soil invertase, urea, alkaline and neutral phosphratase activity, while declined acid phosphratase and catalase activity. Low N supply exhibited higher alkaline and neutral phosphratase activity compared to the others. The results from this study indicated that both drought and N limited the growth of S. davidii seedlings and their biomass production. Regardless of N supply levels, drought stress dramatically reduced the seedlings growth and biomass production. Although plant growth parameters, including basal diameter, height, leaf number, and biomass and their components were observed to be positive responses to low N supply, N supply alone can not alter the diminishing tendency which is caused by drought. available N content increased with increase N supply. In addition, low N supply rather These findings imply that drought played a primary limitation role and N was only the secondary. Even so, appropriate N supply was seemed to enhance the ability that S. davidii seedlings adapted to the xeric and infertile environment by improving soil processes, stimulating plant growth, increasing recourses accumulation, enhancing use efficiency of other limited resources, and balancing biomass and resources partitioning. Appropriate N supply, therefore, would be recommended to improve S. davidii seedling establishment in this region, but excess N supply should be avoided.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

通过单因子和多因子摇瓶正交试验,确定了米曲霉液态发酵产氨基酰化酶的最佳发酵条件。优化发酵培养基组成(ρ/g L-1): 葡萄糖40,蔗糖10,可溶性淀粉20,蛋白胨2.5,马铃薯液1 000mL, pH自然。培养基装量50mL/250mL三角瓶,接种量4%。培养温度30℃,转速100 rmin-1,发酵时间42h。每50mL培养物的总酶活由优化前的2627U提高到7338U,是优化前的2.79倍。 研究了米曲霉氨基酰化酶的部分酶学性质,该酶催化反应的最适pH为7.0,最适温度为40℃,低浓度的Co2+(5×10-4mol/L)对酶活激活作用显著,催化反应过程中,底物浓度大于0.2 mol/L时,存在高浓度底物抑制酶活力现象。 初步探索了包埋法固定化米曲霉氨基酰化酶的载体,在实验的五种载体中,以海藻酸钠为载体包埋固定化米曲霉氨基酰化酶酶活保留率高,且操作简单,成本低廉。对包埋法固定化米曲霉氨基酰化酶酶学性质进行了研究,较游离米曲霉氨基酰化酶,最适温度未发生改变,最适pH向碱性范围偏移至8.0,对酸碱和热的稳定性增强,最适底物浓度增大到0.4 mol/L。 根据氨基酰化酶能立体专一水解L-氨基酰化物的特点,利用米曲霉氨基酰化酶对消旋苯丙氨酸进行了拆分。在米曲霉氨基酰化酶选择性的作用于底物N-乙酰-L-苯丙氨酸,得到L-苯丙氨酸后,通过732阳离子树脂和结晶法分别将L-苯丙氨酸和N-乙酰-D-苯丙氨酸分离,N-乙酰-D-苯丙氨酸通过酸水解脱去乙酰基得到D-苯丙氨酸,拆分得到光学纯度为98%的L-苯丙氨酸(收率84.8%)和光学纯度为92.3%的D-苯丙氨酸(收率89.5%)。 separate factors tests and orthogonal experiments,the optimum fermentation conditions of aminoacylase –producing Aspergillus oryzae were determined, as follows(ρ/g L-1),glucose 40,sucrose 10,soluble starch 20,peptone 2.5,potato juice 1000ml, inoculation volume 4%and fermentation temperature 30℃,rotation speed 100rmin-1.The highest total enzyme activity ,7338μ,was obtained after fermentation for 42 h, increased by 279% compared with the original value of 2627μbefore optimization. We dicussed partial characteristics of aminoacylase. The optimal pH and temperature of aminoacylase were 7.0 and 40℃ respectively. Low- concentration Co2+ (5×10-4mol/L)activated the aminoacylase remarkably while high-concentration substrate lowered the aminoacylase . Five vectors has been used for immobolizing the enzyme and calcium alginate showed to be the best one for it had the slightest influence on the enzyme activity, easy to operate ,and low in price, comparing with other fours. The enzymatic charateristic study showed that its optimum temperature didn’t change, but the optimum pH and substrat concentration were higher after immobilization. The stability of immobolized enzyme to acid, alkaline and heat rised as well. The aminoacylse from Aspergillus oryzae was used to resolute racemic phenylalanine to obtain D-phenylalanine. After catalyzing process, we took two methods to separate D-phenylalanine .In end,L-phenylalanine was obtained with 98% optical purity in 84.8% yield, D-phenylalanine was obtained with 92.3% optical purity in 89.5% yield.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

本文从成都龙泉垃圾填埋场和宜宾造纸厂分离到耐酸性能优良的高温产甲烷菌RY3和中温产甲烷菌SH4,并将其与实验室现有的利用不同底物的产甲烷菌配伍组合成了复合菌剂。采用活性污泥作为固体附着物,研制出了固体产甲烷菌复合菌剂。 菌株RY3的pH耐受范围为5.5~10.5,最适生长pH 6.0~8.0。菌株RY3为革兰氏阳性,长杆状,多数单生,不运动;菌落浅黄色,形状近圆形;利用H2+CO2或甲酸盐作为唯一碳源生长,不利用乙酸盐,对氯霉素非常敏感。该菌最适生长温度为55℃~65℃,最适NaCl浓度为0~2%。根据形态和生理生化特性及16S rDNA序列分析将其初步定为热自养甲烷热杆菌(Methanothermobacter thermautotrophicus)。添加RY3菌液与仅添加厌氧污泥作为接种物相比一周内可使达到最大产甲烷速率所需时间缩短三分之二,甲烷总产量提高约1.8倍。菌株SH4的生长pH范围5.5~9.5,其对酸碱具有良好的适应性,培养3天后,在初始pH值为6.0~8.0的培养基中甲烷产量相差不大,且基本达到最大产量。SH4革兰氏染色阳性,短杆状,多数单生,不运动;菌落近圆形,微黄;利用H2+CO2或甲酸盐作为唯一碳源生长,不利用乙酸盐,对氯霉素非常敏感。SH4最适生长pH 为7.0,最适生长温度为35℃,最适NaCl浓度为0~1.5%。实验表明,添加SH4菌液与仅添加厌氧污泥作为接种物相比可使产甲烷启动时间缩短三分之一,甲烷总产量亦有大幅提高。从形态和生理生化特征以及16S rDNA序列分析表明SH4为嗜树木甲烷短杆菌(Methanobrevibacter arboriphilus)。 以活性污泥为附着物,与培养基和菌种经搅拌后厌氧发酵可得产甲烷菌固体复合菌剂。固体复合菌剂的pH耐受范围为5.5~9.5,温度耐受范围为15℃~65℃,表明其对环境的适应性较强。以猪粪为底物进行厌氧发酵,接种复合菌剂进行试验,以接种实验室长期富集的产甲烷厌氧污泥作为对照,在20℃时,发酵甲烷浓度与对照基本一致,但每日产气量优于对照,第15天时接种复合菌剂的发酵瓶每日产气量是对照的1.59倍;50℃时达到最大甲烷含量所需时间比对照缩短三分之二,三周内总产气量约为对照的2.7倍,甲烷总产量约为2.8倍。以不加接种物为对照,接种复合菌剂20℃时发酵甲烷含量达到50%约需2周,对照2周内甲烷含量最高仅为4.3%;50℃时接种复合菌剂发酵仅需约1周甲烷含量便可达50%,对照则至少需要2周。 In this paper, high-temperature Methanogen RY3 and middle-temperature SH4 were isolated from Chengdu Longquan refuse landfill and Yibin paper mill. They could be used to make compound inoculum that producing methane with the existing Methanogens utilized different substrate. With using anaerobic activated sludge be solid fixture, the process had been designed to produce solid compound inoculum. Strain RY3 possessed excellent capacity of acid and alkali-tolerant. The pH-tolerant scale of RY3 was 5.5~10.5 and its optimum pH value for growth was 6.0~8.0. RY3 was G+, long-rod shape, monothetic and nonmotile, the colony was pale yellow with suborbicular-shape. Formate or H2+CO2 but not acetate was utilized by RY3 as sole C-source, and it was very sensitive to chloramphenicol. Besides, strain RY3 grew fastest at 55℃~65 and 0℃~2% NaCl. Characteristics of modality and physiology with sequence analysis of the 16s rDNA gene of strain RY3 preliminarily showed that it was Methanothermobacter thermautotrophicus. The experiments indicated that the time which began to produce methane with the highest velocity could be shortened two third by adding RY3 in one week, and the total methane production also was 1.8 times than before. Strain SH4 possessed wide scale of growing pH(5.5~9.5)and excellent ability of acclimatizing itself to acid-alkali. The methane production had no apparent difference among those cultivated in different initial pH(6.0~8.0)after three days and equaled to the maximum production basically. Cells of SH4 were G+, short-rod sharp, monothetic and nonmotile. The colony was pale yellow with suborbicular-shape. Formate or H2+CO2 but not acetate was utilized by SH4 as sole C-source, and it was very sensitive to chloramphenicol. Besides, it grew fastest at pH 7.0,55 ℃~65 and 0℃~2% NaCl concentration. The experiment indicated the time that began to produce methane could be shortening one third by adding SH4. And the total methane production also rose apparently. Characteristic of modality and physiology with sequence analysis of the 16S rDNA gene of strain SH4 demonstrated it was Methanobrevibacter arboriphilus. The activated sludge was utilized as fixture, mixed with culture medium and inocolum, that the solid compound inoculum could be produced by anaerobic fermentation. The compound inoculum could grow between pH 5.5~9.5, 15℃~65. It demonstrated the compound inoculum ha℃ve great ability of adapting to circumstance. In the experiment that making pig manure be substrate and taking the anaerobic sludge producing methane that cultured in long term in laboratory to be comparison, the concentration of methane in fermentation added compound inoculum almost equal to the comparison at 20℃, but the volume of gas production could be a little higher. The gas production everyday inoculated compound inoculum was 1.59 times to comparison. The time that the concentration of methane to maximum could be shortening by two third by adding compound inoculum, and the total gas production was 2.7 times to comprison while the total methane production was 2.8 times. If take the no inoculum be the comprasion, anaerobic fermentation added compound inoculum made the concentration of methane to 50% in 2 weeks but the comparison only to 4.3% at 20℃. The time that the concentration of methane to 50% by adding compound inoculum only need 1 week, but the comparison need 2 weeks at 50℃.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

本文筛选出一株能利用木糖产乙醇的丝状真菌Z7,对其利用木糖和半纤维素水解产物产乙醇的发酵条件进行了研究,并对Z7 利用玉米芯产木聚糖酶的条件进行了优化。全文分为三部分: 第一部分:目标微生物筛选、纯化及系统发育分析。以木糖为唯一碳源,采用梯度稀释和平板化线法从高温、中温酒曲中分离到16 株能利用木糖良好生长的丝状真菌;通过发酵试验复筛,获得一株能产乙醇的丝状真菌Z7;综合形态学和ITS 序列分析,初步鉴定为Aspergillus flavus。 第二部分:Z7 的乙醇发酵条件研究。以木糖为碳源,通过单因素试验确定最佳氮源和发酵温度;通过正交试验及SPSS 软件分析得到了不同N、P、K 成分对乙醇、残糖和菌体干重的影响。获得最佳的发酵条件为:(g/L)木糖50,尿素1, NH4NO3 1, K2HPO4 2 , KCl 0.5 , MgSO4.7H2O 0.5 , NaNO3 1 , pH 自然,培养温度33 ℃。以玉米芯半纤维素稀酸水解液为底物进行乙醇发酵,根据稀酸水解的单糖释放量和乙醇产量,确定115 ℃,1 h 为最佳玉米芯预处理条件;结合最佳发酵条件,添加1 g/L 的吐温20 能获得最大的乙醇浓度8.31 g/L。因此,Aspergillus flavus Z7 能利用半纤维素水解产物产乙醇,其中木糖的利用率80%以上。 第三部分:Z7 利用玉米芯产木聚糖酶条件优化。Aspergillus flavus Z7 在具有产乙醇能力的同时还具有产木聚糖酶的能力。本文通过单因素和正交试验得到最佳产酶培养基组分为:(g/L)玉米芯20,尿素2, 酵母膏2.5, K2HPO4 5,NaNO31, MgSO4.7H2O 1。单因素试验表明,用纱布代替塑料布密封摇瓶封口能显著提高产酶量;Z7 在碱性条件下具有更强的产酶性能。在最优条件下发酵,能产生最大木聚糖酶活122.23IU/mL。通过薄层分析,验证了Z7 产生的木聚糖酶具有水解木聚糖生成木糖及木寡糖的能力。 A strain of filamentous fungus which can produce ethanol by using the xylose was isolated in this research. The ethanol fermention conditions from xylose and dilute-acid hydrolyzate of the corn core were studied. The conditions of xylanase production by Z7 were also optimized. The paper involved three parts. Part1: Isolation, purification and phylogenetic analysis of the microbe. By using xylose as the single carbon source and the pla te streaking method, several filamentous fungi were isolated from the wine starter; through the fermentation test, a filamentous fungus Z7 which can produce ethanol was further recognized; furthermore, according to the morphologic observation and ITS seque nces analysis, Z7 was identified as Aspergillus flavus at the first step. Part2: Research on the condition of ethanol fermentation by Z7. By single factor experiment, the optional nitrogen resource and temperature of the fermentation were fixed; meanwhile, through the orthogonal array tests and the analysis of statistic software SPSS, the optional component of the culture medium and the fermentation condition were organized as follows: (g/L) xylose 50, urea 1, NH4NO3 1, K2HPO4 2, KCl 0.5 , MgSO4.7H2O 0.5, NaNO31, pH nature, temperature 33℃. Based on these optimal parameters, the fermentation of dilute-acid hydrolyzate of the corn core was carried on by Z7. According to the quantities of released sugar monomers and content of the ethanol, 115℃ in 1h is the best pretreatment condition; the maximal ethanol content can be obtained when 1g/L Tween 20 was added to. Therefore, the filamentous fungus Aspergillus flavus can use the hydrolysate of hemicellulose to produce ethanol, and the rate of xylose utilization was over 80%. Part3: Optimization of Z7’s xylanase producing condition from corn core. Aspergillus flavus Z7, which can utilize xylose or the hydrolysate of hemicellulose to produce ethanol, also had the ability of xylanase production. The optional component of the culture medium were fixed by the single factor experiment and the orthogonal array tests, and they were organized as follows: (g/L) corn core 20, Urea 2, Yeast extract 2.5, K2HPO4 5, NaNO31, MgSO4.7H2O 1; it was testified by the single factor experiment that sealing the shaking flasks with pledget other than plastic paper can obviously increase the xylanase activity; moreover, Z7 showed better xylanase production ability when in the alkali environment. Under the optional fermentation condition, the maximal xylanase activity 122.23IU/mL was proved. Through the analysis of thin- layer chromatography (TLC), the ability of xylanase from Z7, which can hydrolyze xylan to xylose monomer and oligomer, was vividly displayed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

光学显微检测在半导体探测器研制的多个环节具有重要意义。利用较低价单元、部件组装了一套数字影像光学显微系统,性能与国外中档产品相当,性价比卓越。该系统拥有微机控制的高清晰数字摄影装置,配置大屏幕监视器,搭载高倍干系物镜,分辨率达到0.2μm,可以进行明暗场、偏光、干涉观测。它可以方便的用于缺陷、沾污控制,图形检测,表面光洁度检验,材料鉴定等方面,还可用于测试、封装、修理等精细操作。通过观察焊点的表面形貌,钎料合金的显微结构,可以鉴定焊点质量。如果结合多光束干涉技术可用于表面起伏的精细测量。论文叙述了该系统在半导体探测器研制上的应用,详述了其建造细节。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

本文研究了6×108cm-2、1.8×109cm-2和3.6×109cm-2的12C6+重离子束辐照对胡麻种子M1代生物学性状和DNA分子多态性等方面的影响。6×108cm-2辐照处理可引起胡麻发芽率提高,促进植株株高,增强花粉活力。同时辐照处理使胡麻种子千粒重和含油量有不同程度提高,辐射剂量越高,两者数值越大,3.6×109cm-2辐射剂量的胡麻种子千粒重和含油量与对照组的相比分别高出了16.5%和19.9%,此外在此剂量处发现了花粉发生了形态变化。辐照处理对胡麻DNA分子也产生了影响,筛选出的14个随机引物可以扩增出清晰、稳定、重复性好的DNA片段,有52个是多态性DNA片段,比率为52.5%。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

介绍了 4 π带电粒子多探测器系统 ,该系统由 2 76个探测器单元组成 ,每个单元分别由快、慢塑料闪烁体、碘化铯晶体、硅半导体探测器所组成的望远镜构成。总立体角覆盖约 86 %的 4 π以及有一个很低的能量探测阈。整个探测器系统轴向对称排列 ,工作在真空中。该探测器系统可以鉴别氢、氦的同位素 ,具有大的能量测量动态范围。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

报道了一种在束测量β+ 延发粒子的方法。由新建成的兰州放射性次级束流线 (RIBLL )提供的2 0 Na次级束 ,利用飞行时间 (TOF)和能损 (ΔE)符合的方法实现 2 0 Na次级束流的在束鉴别与调制。将数据获取过程分为有束和停束两个获取时段 ,分别完成对次级束流和β+ 延发粒子的记录。同时利用脉冲发生器和计数器实现2 0 Na延发粒子衰变半衰期的测量

Relevância:

80.00% 80.00%

Publicador:

Resumo:

用圆柱型流气式组织等效正比计数器测定了K 2 0 0kV低能重离子加速器提供的低能16O+离子束流在穿过 4μm厚的PET(C10 H8O4 )薄膜后的微剂量谱和径向剂量分布。测定了穿过不同厚度PET薄膜后的16O+ 束流的单次事件剂量平均比能zID随束流强度的变化曲线。用TIRM 92MonteCarlo程序计算了16O+ 离子在PET材料中的射程 ,与实验结果进行了比较和讨论

Relevância:

80.00% 80.00%

Publicador:

Resumo:

目的:评价重离子束对皮肤恶性肿瘤放射治疗的近期疗效和毒副反应。方法:29例皮肤恶性肿瘤患者分6批接受重离子束放射治疗,其中恶性黑色素瘤13例,皮肤鳞癌及Bowen’s病各6例,基底细胞癌2例,其他皮肤恶性肿瘤2例。照射总剂量(50~70)GyE/(6~12)d,单次剂量5.5~11.67GyE,1f/d,连续治疗。采用RTOG标准和WHO近期疗效标准分别评价毒副反应和近期疗效。结果:截止2009-05,中位随访时间为13.5个月(1~25个月),随访率为100%。29例患者中完全缓解(CR)24例(82.8%),部分缓解(PR)5例(17.2%),有效率(RR)为100%,中位生存时间为22.8个月(95%CI:20.6~24.9)。皮肤反应0度11例(37.9%),Ⅰ度9例(31.0%),Ⅱ度6例(20.7%),Ⅲ度2例(6.9%),Ⅳ度1例(3.4%);血液毒副反应治疗前后无明显改变。结论:重离子束(12C6+)放射治疗皮肤恶性肿瘤近期疗效好,并发症轻,远期疗效、晚期副反应等尚需进一步长期全面的观察和更多的研究提供依据。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

作为核物理的前沿领域之一,高自旋态的研究能够提供核结构、核形变、核子耦合等非常有价值的信息。本论文内容为研究188Au 高自旋态的结构特性。  利用能量为86 和90MeV的19F束流,通过重离子熔合蒸发反应173Yb(19F,4nγ)研究了双奇核188Au 的高自旋态能级结构。利用GEMINI 探测器阵列进行了γ射线的激发函数、X-γ和γ-γ-t 符合测量,共获取了约160×106 个符合事件。基于实验测量结果,对原有的双奇核188Au 能级纲图做了较大的修改。新发现了两个转动带,分别对应建立在π1/2[541]⊗ν1/2[510] 和π1/2[541]⊗νi13/2 组态上的双退耦带和半退耦带。对前人所建立的正宇称带能级进行了修改,发现了一条新的20+态能级,并且指定其为πh11/22νi13/2h9/2的四准粒子结构。考查与费米面临近的单粒子轨道γ形变驱动效应,188Au 晕态带的γ∼70°非轴对称的形变可能是由h11/2− 奇质子驱动的。π1/2[541]⊗νi13/2 带观察到在低自旋发生旋称反转现象,对这个组态带的A∼180 区旋称反转系统性分析表明,反转点的转动惯量c Θ 函数不随NpNn而变,这与其它几个区有明显的不同。 另外,本论文还介绍了利用16 路Segment 型Clover 探测器的γ射线线性极化测量方法。并且利用60Co 源的两条级联γ射线对其灵敏度进行测试,发现能有效地测量γ射线的电磁属性,从而确定能级的宇称

Relevância:

80.00% 80.00%

Publicador:

Resumo:

对最近分离到的一株能合成维生素C前体 - 2 -酮基 -L -古龙酸 (2 -KGA)的新产酸菌V6生物学和分子生物学特性进行了初步研究。该菌株为革兰氏阴性菌 ,细胞为短杆状 ,菌体大小为 0 .8- 1.0× 0 .4 - 0 .6 μm ,菌落为淡黄色 ,好氧 ,最适生长温度为 2 8~ 30℃ ,最适pH为 7.0~ 7.8,GCmol%含量为 5 3.1% ,不含质粒 ,能氧化葡萄糖、山梨醇和山梨糖合成 2 -KGA。 16SrDNA同源性分析发现 ,该产酸菌与以前报道的能合成 2 -KGA的三个属Ketogulonigenium属、Gluconobacter属和Acetobacter属的同源性分别是 98.9~ 99.3%、82~ 83%和 81~ 82 %。基于以上特性分析 ,该产酸菌在分类发育学上宜归为Ketogulonigenium属。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

沙地樟子松引种栽培的成功已使该树种成为中国北方沙区人工造林的首选树种,但由于早期引种的沙地樟子松人工林出现了衰退现象,使得人们对在干旱、半干旱沙地进行大面积樟子松造林产生疑问.为进一步研究沙地樟子松人工林衰退问题,该文以2年生沙地樟子松幼苗为材料,采用盆栽控水和聚乙二醇(PEG)处理法对苗木进行水分胁迫试验,比较两种胁迫处理苗木的光合特性.结果表明,土壤水分胁迫与PEG模拟水分胁迫(处理1 h)对2年生樟子松幼苗光合生理特征及其水分利用效率影响基本一致;当土壤含水量为40%田间持水量时,沙地樟子松已表现出干旱胁迫,土壤含水量为20%田间持水量时胁迫达到最大.10%PEG处理对2年生樟子松幼苗光合生理指标影响与对照具有相同趋势,表明该处理未对苗木造成严重干旱胁迫.20%与30%PEG处理对樟子松幼苗光合指标影响的趋势相同,胁迫超过2 h后樟子松幼苗光合速率、气孔导度、蒸腾速率都降到较低值且相对稳定.土壤含水量为20%田间持水量的胁迫对樟子松幼苗的水分利用效率几乎没有影响,轻度(40%田间持水量)胁迫甚至增高了水分利用效率;PEG胁迫的前期(4 h之前),苗木的水分利用效率低于对照;在胁迫处理4 h后,20%与30%PEG处理的樟子松的水分利用效率均超过了对照.这表明樟子松在较低的土壤含水量下,具有忍耐、适应干旱胁迫的能力.另外,不同形式的强度胁迫处理(30%PEG和20%田间持水量)的各光合特征指标相对值之间没有差异,表明樟子松苗木在强度胁迫条件下各指标相对值已降至相当低的程度.3种PEG浓度(10%、20%、30%)干旱胁迫处理在2 h以内的各指标的相对值与3种土壤水分胁迫处理(40%、30%、20%田间持水量)基本一致,因此,可以认为2 h的PEG胁迫处理与土壤水分胁迫处理(7~10 d)具有相同的效果.