279 resultados para quantum confinement model


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The valence subband energies and wave functions of a tensile strained quantum well are calculated by the plane wave expansion method within the 6 * 6 Luttinger-Kohn model. The effect of the number and period of plane-waves used for expansion on the stability of energy eigenvalues is examined. For practical calculation, it should choose the period large sufficiently to ensure the envelope functions vanish at the boundary and the number of plane waves large enough to ensure the energy eigenvalues keep unchanged within a prescribed range.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The semirigid vibrating rotor target model is applied to study the isotope effect in reaction H + CH4-->H-2 + CH3 using time-dependent wave-packet method. The reaction probabilities for producing H-2 and HD product channels are calculated. The energy dependence of the reaction probabilities shows oscillating structures for both reaction channels. At low temperature or collision energies, the H atom abstraction is favored due to tunnelling effect. In partially deuterated CHxDy (x + y = 4), the breaking of the C-H bond is favored over that of the C-D bond in the entire energy range studied. In H + CHD3 reaction at high energies, the HD product dominates simply due to statistical factor. (C) 2003 American Institute of Physics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A theoretical model of collisional quantum interference (CQI) is developed in a diatom-diatom system based on the first-order Born approximation of time-dependent perturbation theory and the multipolar interaction potential. The transition cross section is obtained. The relations between the differential and integral interference angles are discussed. The key factors on the determination of the differential and integral interference angles are obtained. The changing tendency of the interference angles with the experimental temperatures is obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The beam lattice-type models, such as the Euler-Bernoulli (or Timoshenko) beam lattice and the generalized beam (GB) lattice, have been proved very effective in simulating failure processes in concrete and rock due to its simplicity and easy implementation. However, these existing lattice models only take into account tensile failures, so it may be not applicable to simulation of failure behaviors under compressive states. The main aim in this paper is to incorporate Mohr-Coulomb failure criterion, which is widely used in many kinds of materials, into the GB lattice procedure. The improved GB lattice procedure has the capability of modeling both element failures and contact/separation of cracked elements. The numerical examples show its effectiveness in simulating compressive failures. Furthermore, the influences of lateral confinement, friction angle, stiffness of loading platen, inclusion of aggregates on failure processes are respectively analyzed in detail.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a universal quantum computation scheme for trapped ions in thermal motion via the technique of adiabatic passage, which incorporates the advantages of both the adiabatic passage and the model of trapped ions in thermal motion. Our scheme is immune from the decoherence due to spontaneous emission from excited states as the system in our scheme evolves along a dark state. In our scheme the vibrational degrees of freedom are not required to be cooled to their ground states because they are only virtually excited. It is shown that the fidelity of the resultant gate operation is still high even when the magnitude of the effective Rabi frequency moderately deviates from the desired value.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate high-order harmonic emission and isolated attosecond pulse (IAP) generation in atoms driven by a two-colour multi-cycle laser field consisting of an 800 nm pulse and an infrared laser pulse at an arbitrary wavelength. With moderate laser intensity, an IAP of similar to 220 as can be generated in helium atoms by using two-colour laser pulses of 35 fs/800 nm and 46 fs/1150 nm. The discussion based on the three-step semiclassical model, and time-frequency analysis shows a clear picture of the high-order harmonic generation in the waveform-controlled laser field which is of benefit to the generation of XUV IAP and attosecond electron pulses. When the propagation effect is included, the duration of the IAP can be shorter than 200 as, when the driving laser pulses are focused 1 mm before the gas medium with a length between 1.5 mm and 2 mm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We theoretically demonstrate the selective enhancement of high-order harmonic generation (HHG) in two-color laser fields consisting of a single-cycle fundamental wave (800 nm wavelength) and a multicycle subharmonic wave (2400 nm wavelength). By performing time-frequency analyses based on a single-active-electron model, we reveal that such an enhancement is a result of the modified electron trajectories in the two-color field. Furthermore, we show that selectively enhanced HHG gives rise to a bandwidth-controllable extreme ultraviolet supercontinuum in the plateau region, facilitating the generation of intense single isolated attosecond pulses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We address the influence of the orbital symmetry and the molecular alignment with respect to the laser-field polarization on laser-induced nonsequential double ionization of diatomic molecules, in the length and velocity gauges. We work within the strong-field approximation and assume that the second electron is dislodged by electron-impact ionization, and also consider the classical limit of this model. We show that the electron-momentum distributions exhibit interference maxima and minima due to electron emission at spatially separated centers. The interference patterns survive integration over the transverse momenta for a small range of alignment angles, and are sharpest for parallel-aligned molecules. Due to the contributions of the transverse-momentum components, these patterns become less defined as the alignment angle increases, until they disappear for perpendicular alignment. This behavior influences the shapes and the peaks of the electron-momentum distributions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microtubules (MT) are composed of 13 protofilaments, each of which is a series of two-state tubulin dimers. In the MT wall, these dimers can be pictured as "lattice" sites similar to crystal lattices. Based on the pseudo-spin model, two different location states of the mobile electron in each dimer are proposed. Accordingly, the MT wall is described as an anisotropic two-dimensional (2D) pseudo-spin system considering a periodic triangular "lattice". Because three different "spin-spin" interactions in each cell exist periodically in the whole MT wall, the system may be shown to be an array of three types of two-pseudo-spin-state dimers. For the above-mentioned condition, the processing of quantum information is presented by using the scheme developed by Lloyd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To attempt to control the quantum state of a physical system with a femtosecond two-colour laser field, a model for the two-level system is analysed as a first step. We investigate the coherent control of the two-colour laser pulses propagating in a two-level medium. Based on calculating the influence of the laser field with various laser parameters on the electron dynamics, it is found the electronic state can be changed up and down by choosing the appropriate laser pulses and the coherent control of the two-colour laser pulses can substantially modify the behaviour of the electronic dynamics: a quicker change of two states can be produced even for small pulse duration. Moreover, the oscillatory structures around the resonant frequency and the propagation features of the laser pulses depend sensitively on the relative phase of the two-colour laser pulses. Finally, the influence of a finite lifetime of the upper level is discussed in brief.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For the first time, a quaternary doping system of Er3+, Yb3+, Ce3+, Na+:CaF2 single crystal was demonstrated to have high fluorescence yield in the eye-safe 1.5 mu m region under 980 nm laser diode pumping, with relatively broad and flat gain curves. A simplified model was established to illustrate the effect of Ce3+ on the branching ratio for the Er3+4I11/2 -> I-4(13/2) transition. With 0.2-at.% Er3+ and 2.0-at.% Ce3+ in the quaternary-doped CaF2 crystal, the branching ratio was estimated to be improved more than 40 times by the deactivating effect of Ce3+ on the Er3+ 4I11/2 level. The quaternary-doped CaF2, system shows great potential to achieve high laser performance in the 1.5 mu m region. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using effective-mass Hamiltonian model of semiconductors quantum well structures, we investigate the electronic structures of the Gamma-conduction and L-conduction subbands of GeSn/GeSiSn strained quantum well structure with an arbitrary composition. Our theoretical model suggests that the band structure could be widely modified to be type I, negative-gap or indirect-gap type II quantum well by changing the mole fraction of alpha-Sn and Si in the well and barrier layers, respectively. The optical gain spectrum in the type I quantum well system is calculated, taking into account the electrons leakage from the Gamma-valley to L-valley of the conduction band. We found that by increasing the mole fraction of alpha-Sn in the barrier layer and not in the well layer, an increase in the tensile strain effect can significantly enhance the transition probability, and a decrease in Si composition in the barrier layer, which lowers the band edge of Gamma-conduction subbands, also comes to a larger optical gain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate interference effects of the backscattering current through a double-barrier structure in an interacting quantum wire attached to noninteracting leads. Depending on the interaction strength and the location of the barriers, the backscattering current exhibits different oscillation and scaling characteristics with the applied voltage in the strong and weak interaction cases. However, in both cases, the oscillation behaviors of the backscattering current are mainly determined by the quantum mechanical interference due to the existence of the double barriers.