230 resultados para particle-stimulated nucleation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural characteristic of cubic GaN (C-GaN) nucleation layers on GaAs(0 0 1) substrates by metalorganic chemical vapor deposition was in detail investigated first by X-ray diffraction (XRD) measurements, using a Huber five-circle diffractometer and an intense synchrotron X-ray source. The XRD results indicate that the C-GaN nucleation layers are highly crystallized. Phi scans and pole figures of the (1 1 1) reflections give a convincing proof that the GaN nucleation layers show exactly cubic symmetrical structure. The GaN(1 1 1) reflections at 54.74degrees in chi are a measurable component, however (002) components parallel to the substrate surface are not detected. Possible explanations are suggested. The pole figures of {1 0 (1) over bar 0} reflections from H-GaN inclusions show that the parasitic H-GaN originates from the C-GaN nucleation layers. The coherence lengths along the close-packed [1 1 1] directions estimated from the (1 1 1) peaks are nanometer order of magnitude. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The photo- and thermo-stimulated luminescence (PSL and TSL) of BaFCl0.8Br0.2:Sm2+,Sm3+ phosphors were investigated. It is found that the stimulated luminescence intensity of Sm2+ is almost equal to that of Sm3+ even if the content of Sm2+ is much lower than that of Sm3+. Only the stimulated luminescence of Sm2+ is observed in the sample in which the content of Sm2+ is much higher than Sm3+, demonstrating that the PSL or TSL efficiency of Sm2+ is much higher than that of Sm3+. This is attributed to the effective overlap of the e-h emission with the absorption of Sm2+ centers which may make the energy transfer from the electron-hole pairs to Sm2+ effectively. In BaFCl0.8Br0.2:Sm2+,Sm3+ the stimulated luminescence is considered to be occurred via the recombination of photoreleased electrons with the [Sm2+ + h] or [Sm3+ + h] complex and the energy transfer from the electron-hole pairs to the luminescence centers (Sm2+ and Sm3+) is concerned to be the major step to determine the stimulated luminescence efficiency. The X-ray-induced stimulated luminescence is compared and connected to the photon gated hole burning. The net result of the two processes is quite similar and may be comparable. It is suggested from the observations of stimulated luminescence that electron migration between Sm2+ and Sm3+ is not the major process, color centers may play an important role in hole burning. The information from stimulated luminescence is helpful for the understanding of the hole burning mechanism. (C) 1999 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atomic force microscopy and photoluminescence spectroscopy (PL) has been used to study asymmetric bilayer InAs quantum dot (QD) structures grow by molecular-beam epitaxy on GaAs (001) substrates. The two InAs layers were separated by a 7-nm-thick GaAs spacer layer and were grown at different substrate temperature. We took advantage of the intrinsic nonuniformity of the molecular beams to grow the seed layer with an average InAs coverage of 2.0 ML. Then the seed layer thickness could be divided into three areas: below, around and above the critical thickness of the 2D-3D transition along the 11101 direction of the substrate. Correspondingly, the nucleation mechanisms of the upper InAs layer (UIL) could be also divided into three areas: temperature-controlled, competition between temperature-controlled and strain-induced, and strain-induced (template-controlled) nucleation. Small quantum dots (QDs) with a large density around 5 x 10(10) cm(-2) are found in the temperature-controlled nucleation area. The QD size distributions undergo a bimodal to a unimodal transition with decreasing QD densities in the strain-induced nucleation area, where the QD densities vary following that of the seed layer (templating effect). The optimum QD density with the UIL thickness fixed at 2.4 ML is shown to be around 1.5 x 10(10) cm(-2), for which the QD size distribution is unimodal and PL emission peaks at the longest wavelength. The QDs in the in-between area exhibit a broad size distribution with small QDs and strain-induced large QDs coexisting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thick GaN films were grown on sapphire in a home-made vertical HVPE reactor. Effect of nucleation treatments on the properties of GaN films was investigated, including the nitridation of sapphire, low temperature GaN buffer and MOCVD-template. Various material characterization techniques, including AFM, SEM, XRD, CL and PL have been used to assess these GaN epitaxial films. It was found that the surface of sapphire after high temperature nitridation was flat and showed high density nucleation centers. In addition, smooth Ga-polarity surface of epitaxial layer can be obtained on the nitridation sapphire placed in air for several days due to polarity inversion. This may be caused by the atoms re-arrangement because of oxidation. The roughness of N-polarity film was caused by the huge inverted taper domains, which can penetrate up to the surface. The low temperature GaN buffer gown at 650 degrees C is favorable for subsequent epitaxial film, which had narrow FWHM of 307 arcsec. The epitaxial growth on MOCVD-template directly came into quasi-2D growth mode due to enough nucleation centers, and high quality GaN films were acquired with the values of the FWHM of 141 arcsec for (002) reflections. After etching in boiled KOH, that the total etch-pit density was only 5 x 106 cm(-2) illustrated high quality of the thick film on template. The photoluminescence spectrum of GaN film on the MOCVD-template showed the narrowest line-width of the band edge emission in comparison with other two growth modes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Particle Swarm Optimization (PSO) algorithm is often used for finding optimal solution, but it easily entraps into the local extremum in later evolution period. Based on improved chaos searching strategy, an enhanced particle swarm optimization algorithm is proposed in this study. When particles get into the local extremum, they are activated by chaos search strategy, where the chaos search area is controlled in the neighborhood of current optimal solution by reducing search area of variables. The new algorithm not only gets rid of the local extremum effectively but also enhances the precision of convergence significantly. Experiment results show that the proposed algorithm is better than standard PSO algorithm in both precision and stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A three-dimensional analytical solution of the microheater temperature based on heat diffusion equation is developed and compared with experimental results. Dimensionless parameters are introduced to analyze the temperature rise time and the distribution under steady state. To study the microheater temperatures before bubble nucleation, a set of working fluids and microheaters are considered. It is shown that the dimensionless time xi(-)(0) required for the temperature rise from room to 95% of the steady state temperature is about 75, not dependent on working fluids and microheaters. Heat transfer to the surrounding liquid is mainly caused by conduction, not by convection and radiation mechanisms. The microheater length affects the surface temperature uniformity, while its width influences the steady temperatures significantly, yielding the transition from heterogeneous to homogeneous nucleation mechanism from square microheaters to narrow line microheaters. 

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate slow-light pulse propagation in an optical fiber via transient stimulated Brillouin scattering. Space-time evolution of a generating slow-light pulse is numerically calculated by solving three-wave coupled-mode equations between a pump beam, an acoustic wave, and a counterpropagating signal pulse. Our mathematical treatments are applicable to both narrowband and broadband pump cases. We show that the time delay of 85% pulse width can be obtained for a signal pulse of the order of subnanosecond pulse width by using a broadband pump, while the signal pulse is broadened only by 40% of the input signal pulse. The physical origin of the pulse broadening and distortion is explained in terms of the temporal decay of the induced acoustic field. (C) 2009 Optical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a method of effectively extending the stimulated Brillouin scattering (SBS) gain bandwidth in a single-mode optical fiber to reduce group-velocity-dispersion (GVD)-dependent pulse spread of SBS slow light. This can be done by overlapping doublet SBS gain spectra synthesized from a single pump laser. Numerical calculations are performed to verify our proposed method. We find that there exists the optimum spectral separation between two center frequencies of the doublet SBS gain spectrum with respect to the inherent spectral width of the pump laser, which makes it possible to effectively reduce the signal pulse broadening due to GVD. We show that the maximum time delay of the amplified signal pulse can be approximately two times longer than that by a previously reported method using a single broadband pump laser. (c) 2008 Optical Society of America.