108 resultados para molecular dynamics simulations
Resumo:
In an earlier study on intersonic crack propagation, Gao et al. (J. Mech. Phys. Solids 49: 2113-2132, 2001) described molecular dynamics simulations and continuum analysis of the dynamic behaviors of a mode II dominated crack moving along a weak plane under a constant loading rate. The crack was observed to initiate its motion at a critical time after the onset of loading, at which it is rapidly accelerated to the Rayleigh wave speed and propagates at this speed for a finite time interval until an intersonic daughter crack is nucleated at a peak stress at a finite distance ahead of the original crack tip. The present article aims to analyze this behavior for a mode III crack moving along a bi-material interface subject to a constant loading rate. We begin with a crack in an initially stress-free bi-material subject to a steadily increasing stress. The crack initiates its motion at a critical time governed by the Griffith criterion. After crack initiation, two scenarios of crack propagation are investigated: the first one is that the crack moves at a constant subsonic velocity; the second one is that the crack moves at the lower shear wave speed of the two materials. In the first scenario, the shear stress ahead of the crack tip is singular with exponent -1/2, as expected; in the second scenario, the stress singularity vanishes but a peak stress is found to emerge at a distance ahead of the moving crack tip. In the latter case, a daughter crack supersonic with respect to the softer medium can be expected to emerge ahead of the initial crack once the peak stress reaches the cohesive strength of the interface.
Resumo:
Dynamic wetting and electrowetting are explored using molecular dynamics simulations. The propagation of the precursor film (PF) is fast and obeys the power law with respect to time. Against the former studies, we find the PF is no slip and solidlike. As an important application of the PF, the electro-elasto-capillarity, which is a good candidate for drug delivery at the micro- or nanoscale, is simulated and realized for the first time. Our findings may be one of the answers to the Huh-Scriven paradox and expand our knowledge of dynamic wetting and electrowetting.
Resumo:
In conventional metals, there is plenty of space for dislocations-line defects whose motion results in permanent material deformation-to multiply, so that the metal strengths are controlled by dislocation interactions with grain boundaries(1,2) and other obstacles(3,4). For nano-structured materials, in contrast, dislocation multiplication is severely confined by the nanometre-scale geometries so that continued plasticity can be expected to be source-controlled. Nano-grained polycrystalline materials were found to be strong but brittle(5-9), because both nucleation and motion of dislocations are effectively suppressed by the nanoscale crystallites. Here we report a dislocation-nucleation-controlled mechanism in nano-twinned metals(10,11) in which there are plenty of dislocation nucleation sites but dislocation motion is not confined. We show that dislocation nucleation governs the strength of such materials, resulting in their softening below a critical twin thickness. Large-scale molecular dynamics simulations and a kinetic theory of dislocation nucleation in nano-twinned metals show that there exists a transition in deformation mechanism, occurring at a critical twin-boundary spacing for which strength is maximized. At this point, the classical Hall-Petch type of strengthening due to dislocation pile-up and cutting through twin planes switches to a dislocation-nucleation-controlled softening mechanism with twin-boundary migration resulting from nucleation and motion of partial dislocations parallel to the twin planes. Most previous studies(12,13) did not consider a sufficient range of twin thickness and therefore missed this strength-softening regime. The simulations indicate that the critical twin-boundary spacing for the onset of softening in nano-twinned copper and the maximum strength depend on the grain size: the smaller the grain size, the smaller the critical twin-boundary spacing, and the higher the maximum strength of the material.
Resumo:
The history of Laplace's equations for spherical and cylindrical droplets and the concept of dividing surface in Gibbs' thermodynamic theory of capillary phenomena are briefly reviewed. The existing theories of surface tensions of cylindrical droplets are briefly reviewed too. For cylindrical droplets, a new method to calculate the radius and the surface tension of the surface of tension is given. This method is suitable to be used by molecular dynamics simulations.
Resumo:
Phase transformation and subdomain structure in [0001]-oriented gallium nitride (GaN) nanorods of different sizes are studied using molecular dynamics simulations. The analysis concerns the structure of GaN nanorods at 300 K without external loading. Calculations show that a transformation from wurtzite to a tetragonal structure occurs along {0110} lateral surfaces, leading to the formation of a six-sided columnar inversion domain boundary (IDB) in the [0001] direction of the nanorods. This structural configuration is similar to the IDB structure observed experimentally in GaN epitaxial layers. The transformation is significantly dependent on the size of the nanorods.
Resumo:
We study the heat conduction of two nonlinear lattices joined by a weak harmonic link. When the system reaches a steady state, the heat conduction of the system is decided by the tunneling heat flow through the weak link. We present an analytical analysis by the combination of the self-consistent phonon theory and the heat tunneling transport formalism, and then the tunneling heat flow can be obtained. Moreover, the nonequilibrium molecular dynamics simulations are performed and the simulations results are consistent with the analytical predictions.
Resumo:
Many efforts have been devoted to exploring novel luminescent materials that do not contain expensive or toxic elements, or do not need mercury vapor plasma as the excitation source. In this paper, amorphous Al2O3 powder samples were prepared via the Pechini-type sol-gel process. The resulting samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FESEM), photoluminescence (PL) excitation and emission spectra, kinetic decay, and electron paramagnetic resonance (EPR).
Resumo:
We show that diffusion can play an important role in protein-folding kinetics. We explicitly calculate the diffusion coefficient of protein folding in a lattice model. We found that diffusion typically is configuration- or reaction coordinate-dependent. The diffusion coefficient is found to be decreasing with respect to the progression of folding toward the native state, which is caused by the collapse to a compact state constraining the configurational space for exploration. The configuration- or position-dependent diffusion coefficient has a significant contribution to the kinetics in addition to the thermodynamic free-energy barrier. It effectively changes (increases in this case) the kinetic barrier height as well as the position of the corresponding transition state and therefore modifies the folding kinetic rates as well as the kinetic routes. The resulting folding time, by considering both kinetic diffusion and the thermodynamic folding free-energy profile, thus is slower than the estimation from the thermodynamic free-energy barrier with constant diffusion but is consistent with the results from kinetic simulations. The configuration- or coordinate-dependent diffusion is especially important with respect to fast folding, when there is a small or no free-energy barrier and kinetics is controlled by diffusion.Including the configurational dependence will challenge the transition state theory of protein folding.
Resumo:
Geological fluids are important components in the earth system. To study thephysical chemistry properties and the evolution of fluid system turns out to be one of the most challenging issues in geosciences. Besides the conventional experimental approaches and theoretical or semi-theoretical modeling, molecular level computer simulation(MLCS) emerges as an alternative tool to quantificationally study the physico-chemical properties of fluid under extreme conditions in order to find out the characteristics and interaction of geological fluids in and around earth. Based on our previous study of the intermolecular potential for pure H2O and thestrict evaluation of the competitive potential models for pure CH4 and the ab initio fitting potential surface across H2O-CH4 molecules in this study, we carried out more than two thousand molecular dynamics simulations for the PVTx properties of pure CH4 and the H2O-CH4 mixtures. Comparison of 1941 simulations with experimental PVT data for pure CH4 shows an average deviation of 0.96% and a maximum deviation of 2.82%. The comparison of the results of 519 simulations of the mixtures with the experimental measurements reveals that the PVTx properties of the H2O-CH4 mixtures generally agree with the extensive experimental data with an average deviation of 0.83% and 4% in maximum, which is equivalent to the experimental uncertainty. Moreover, the maximum deviation between the experimental data and the simulation results decreases to about 2% as temperature and pressure increase,indicating that the high accuracy of the simulation is well retained in the high temperature and pressure region. After the validation of the simulation method and the intermolecular potential models, we systematically simulated the PVTx properties of this binary system from 673 K and 0.05 GPa to 2573 K and 10 GPa. In order to integrate all the simulation results and the experimental data for the calculation of thermodynamic properties, an equation of state (EOS) is developed for the H2O-CH4 system covering 673 to 2573 K and 0.01 to 10 GPa. Isochores for compositions < 4 mol% CH4 up to 773 K and 600 MPa are also determined in this thesis.
Resumo:
That the dodecahedral water cluster (DWC) can adsorb dissolved methane molecules, an important phenomenon related to the hydrate nucleation study, has been observed through molecular dynamics simulations, but it has not been explained satisfactorily [Guang-Jun Guo; Yi-Gang Zhang; Hua Liu. J. Phys. Chem. C, 2007, 111, 2595]. In order to explain this phenomenon by using the potential of mean force (PMF) between the DWC and the dissolved methane, we perform several series of constrained molecular dynamics simulations in the methane-water system. The distance between the center of DWC and the methane molecule is constrained from 5 Å to 18 Å by adding 0.2 Å every time. For each fixed distance, we perform 20 independent simulations to improve the statistical precision. We first get the constraint force between the DWC and the dissolved methane in each simulation and then calculate the PMF by integrating these forces. Subsequently, the radial distribution function (RDF) is obtained from the PMF through an equation of statistical mechanics. The results show that the RDF has a sharp peak at about 6.2 Å, successfully explaining why the DWC adsorbs dissolved methane molecules. The preferential binding coefficient is a positive value (=2.05±0.5), indicates that the DWC tends to adsorb dissolved methane rather than water molecules in methane aqueous solutions. The curve of PMF for the DWC encaging a methane almost coincides that for the empty DWC, meaning that it is the DWC rather than the encaged methane who could adsorb dissolved methane molecules. By comparing the curves of PMF for different directions of the DWC relative to the dissolved methane, we find that it is the cage face rather than the cage edge or vertex that plays an essential role when the DWC adsorbing dissolved methane. This research sheds light on the driving force for the methane adsorption, and it is helpful in understanding the nucleation process of methane hydrate.
Resumo:
Molecular dynamics simulations were used to study the pressure dependence of the structure and the dynamic properties of forsterite melt (Mg_2SiO_4), diopside melt (CaMgSi_2O_6), anorthite melt (CaAl_2Si_2O_8), jadite melt (NaAlSi_2O_6) and albite melt (NaAlSi3O8) from 0 GPa to 25 GPa at about 2000 K and the following conclusions have been reached. Firstly, the ratio of NBO to T (NBO and T denote the content of non-bridging oxygen and the total content of Si~(4+) and Al~(3+) respectively) is closely related to the pressure and the composition of the melts. It decreases monotonously in forsterite, diopside and anorthite melts while increases at the initial stage and then decreases in jadite and albite melts with increasing pressure. At a fixed pressure, the shear viscosity of the melts decreases with increasing NBO/T and the variation rate is almost 150 times higher in fully polymerized melts than that in de-polymerized melts in comparison with anorthite melts. Secondly, it is generally accepted that the formation of the Si and A1 will promote the diffusion of the network-forming ions. The hypothesis is frequently employed to explain the emergence of the maximum self-diffusion coefficient of the network-forming ions in fully polymerized melts. However, I detected that the pressure corresponding to the peak of the self-diffusion coefficient of the network-forming ions is lower than that corresponding to the maximum content of Si and A1, and that there exists an approximately linear relationship between the self-diffusion coefficient of the ions and the breaking frequency of the bonds under a given pressure, which is different from the present understanding about the mechanism of self-diffusion. Thirdly, the relationship between the self-diffusion coefficient of Si~(4+), Al~(3+) and O~(2-) and the shear viscosity of the melts evolves from the Stokes-Einstein equation and Sutherland-Einstein equation to the Eyring equation with increasing pressure. And the key to obtain self-diffusion coefficient from shear viscosity under difference pressures is to determine A. in the Eyring equation. For Si~(4+) and O~(2-), this could be done using the linear relationship between A, and NBO% in anorthite melts. However, this method is inapplicable in other kinds of melts.
Resumo:
Geological fluids exist in every geosphere of the Earth and play important roles in many processes of material transformations, energetic interchanges and geochemical interactions. To study the physicochemical properties and geochemical behaviors of geological fluids turn Girt to be one of the challenging issues in geosciences. Compared with conventional approaches of experiments and semi-theoretical modeling, computer simulation on molecular level shows its advantages on quantitative predictions of the physicochemical properties of geological fluids under extreme conditions and emerges as a promising approach to find the characteristics of geological fluids and their interactions in different geospheres of the Earth interior.This dissertation systematically discusses the physicochemical properties of typical geological fluids with state-of-the-art computer simulation techniques. The main results can be summarized as follows: (1) The experimental phase behaviors of the systems CH4-C2H6 and. CO2 have been successfully reproduced with Monte Carlo simulations. (2) Through comprehensive isothermal-isobaric molecular dynamics simulations, the PVT data of water hia^e been extended beyond experimental range to about 2000 K and 20 GPa and an improved equation of state for water has been established. (3) Based on extensive computer simulations, am optimized molecular potential for carbon dioxide have been proposed, this model is expected to predict different properties of carbon dioxide (volumetric properties, phase equilibria, heat of vaporization, structural and dynamical properties) with improved accuracies. (4) On the basis of the above researches of the end-members, a set of parameters for unlike interactions has been proposed by non-linear fitting to the ab initio potential surface of CO2-H2O and is superior to the common used mixing rule and the results of prior workers vs/Ith remarkable accuracies, then a number of simulations of the mixture have been carried out to generate data under high temperatures and pressures as an important complement to the limited experiments. (5) With molecular dynamics simulations, various structural, dynamical and thermodynamical properties of ionic solvations and associations have been oomprehensively analyzed, these results not only agree well with experimental data and first principle calculation results, but also reveal some new insights into the microscopic ionic solvation and association processes.
Resumo:
The mechanical deformations of nickel nanowire subjected to uniaxial tensile strain at 300 K are simulated by using molecular dynamics with the quantum corrected Sutten-Chen many-body force field. We have used common neighbor analysis method to investigate the structural evolution of Ni nanowire during the elongation process. For the strain rate of 0.1%/ps, the elastic limit is up to about 11% strain with the yield stress of 8.6 GPa. At the elastic stage, the deformation is carried mainly through the uniform elongation of the distances between the layers (perpendicular to the Z-axis) while the atomic structure remains basically unchanged. With further strain, the slips in the {111} planes start to take place in order to accommodate the applied strain to carry the deformation partially, and subsequently the neck forms. The atomic rearrangements in the neck region result in a zigzag change in the stress-strain curve; the atomic structures beyond the region, however, have no significant changes. With the strain close to the point of the breaking, we observe the formation of a one-atom thick necklace in Ni nanowire. The strain rates have no significant effect on the deformation mechanism, but have some influence on the yield stress, the elastic limit, and the fracture strain of the nanowire.
Resumo:
A hybrid method of continuum and particle dynamics is developed for micro- and nano-fluidics, where fluids are described by a molecular dynamics (MD) in one domain and by the Navier-Stokes (NS) equations in another domain. In order to ensure the continuity of momentum flux, the continuum and molecular dynamics in the overlap domain are coupled through a constrained particle dynamics. The constrained particle dynamics is constructed with a virtual damping force and a virtual added mass force. The sudden-start Couette flows with either non-slip or slip boundary condition are used to test the hybrid method. It is shown that the results obtained are quantitatively in agreement with the analytical solutions under the non-slip boundary conditions and the full MD simulations under the slip boundary conditions.
Resumo:
Microtwins are frequently observed in face-centered-cubic (fcc) metal nanowires with low stacking fault energy. The authors have previously reported that the tensile Yield strength of copper nanowires can be increased by, the presence of twin boundaries. lit this work, simulations are carried out under both uniaxial tension and compression loading, to demonstrate that the strengthening effects are inherent to these nanowires, independent of the loading condition (tensile/compressive). It appears that the strengthening mechanism of the twinned nanowires can be attributed to stress redistribution due to the change of crystallographic orientations across twin boundaries, which requires larger external stress to make them Yield as compared to the twin-free wire.