163 resultados para lipid degradation
Resumo:
Three kinds of organically modified Na+-montmorillonites (OMMTs), including two kinds of octadecylammonium modified montmorillonite with different contents of octadecylammonium and a kind of sodium dodecylsulfonate (SDSo) modified montmorillonite, were used to prepare polyamide 12 (PA12)/OMMT nanocomposites. Effects of the modifiers on degradation and fire retardancy of PA12/OMMT nanocomposites were investigated. Acid sites formed in cationic surfactant modified MMT via Hoffman decomposition could accelerate degradation of PA12 at high temperature. However, catalytic effect of the acid sites on carbonization of the degradation products promoted char barrier formation, which reduced heat release rate (HRR). Higher content of cationic surfactant in OMMT is beneficial to fire retardancy of PA12 nanocomposites and the dispersion states of OMMT have assistant effects. In contrast, Na+-montmorillonite (Na-MMT) and anionic surfactant modified MMT (a-MMT) could not form acid sites on the MMT layers; in this case, fire retardancy of PA12/Na-MMT appears to have no improvement and PA12/a-MMT appears to have limited improvement.
Resumo:
The possibility of mesoporous acid solid as a carrier for metallocene catalyst in ethylene polymerization and catalyst for polyethylene (PE) catalytic degradation was investigated. Here, HMCM- 41 and AIMCM-41, and mesoporous silicoaluminophosphate molecular sieves (SAPO1 and SAPO2) were synthesized and used as acid solid. Much more gases were produced during catalytic degradation in PE/acid solid mixtures via in situ polymerization than those via physical mixing. The particle size distribution results exhibited that the particle size of SAPO1 in the PE/SAPO1 mixture via in situ polymerization was about 1/14 times of that of the original SAPO1 or SAPO1-supported metallocene catalyst. This work shows a novel technology for chemical recycling of polyolefin.
Resumo:
Poly(L-lactide) (PLLA) and poly(epsilon-caprolactone) (PCL) ultrafine fibers were prepared by electrospinning. The influence of cationic and anionic surfactants on their enzymatic degradation behavior was investigated by measuring weight loss, molecular weight, crystallinity, and melting temperature of the fibers as a function of degradation time. Under the catalysis of proteinase K, the PLLA fibers containing the anionic surfactant sodium docecyl sulfate (SDS) exhibited a faster degradation rate than those containing cationic surfactant triethylbenzylammonium chloride (TEBAC), indicating that surface electric charge on the fibers is a critical factor for an enzymatic degradation. Similarly, TEBAC-containing PCL fibers exhibited a 47% weight loss within 8.5 h whereas SDS-containing PCL fibers showed little degradation in the presence of lipase PS. By analyzing the charge status of proteinase K and lipase PS under the experimental conditions, the importance of the surface charges of the fibers and their interactions with the charges on the enzymes were revealed. Consequently, a "two-step" degradation mechanism was proposed: (1) the enzyme approaches the fiber surface; (2) the enzyme initiates hydrolysis of the polymer.
Resumo:
A new method for prolidase (PLD, EC 3.4.13.9) activity assay was developed based on the determination of proline produced from enzymatic reaction through capillary electrophoresis (CE) with tris(2,2'-bipyridyl)ruthenium(11) [Ru(bpy)(3)(2+)] electrochemiluminescence detection (ECL). A detection limit of 12.2 fmol (S/N = 3) for proline, corresponding to 1.22 x 10(-8) units of prolidase catalyzing for 1 min was achieved. PLD activity determined by CE-ECL method was in agreement with that obtained from the classical Chinard's one. CE-ECL showed its powerful resolving ability and selectivity as no sample pretreatmentwas needed and no interference existed. The clinical utility of this method was successfully demonstrated by its application to assay PLD activity in the serum of diabetic patients in order to evaluate collagen degradation in diabetes mellitus (DM). The results indicated that enhanced collagen degradation occurred in DM.
Resumo:
Didodecyldimethylammonium bromide (DDAB) lipid bilayer-protected gold nanoparticles (AuNPs), which were stable and hydrophilic, were synthesized by in situ reduction of HAuCl4 with NaBH4 in an aqueous medium in the presence of DDAB. As-prepared nanoparticles were characterized by UV-vis spectra, transmission electron microscopy, dynamic light scattering analysis, and X-ray photoelectron spectroscopy. All these data supported the formation of AuNPs. Fourier transform infrared spectroscopy (FTIR) and differential thermal analysis/thermogravimetric analysis data revealed that DDAB existed in a bilayer structure formed on the particle surface, resulting in a positively charged particle surface. The FTIR spectra also indicated that the DDAB bilayer coated on the surface of AuNPs was probably in the ordered gel phase with some end-gauche defects. On the basis of electrostatic interactions between such AuNPs and anionic polyelectrolyte poly(sodium 4-styrenesulfonate) (PSS), we successfully fabricated (PSS/AuNP)(n) multilayers on a cationic polyelectrolyte poly(ethylenimine) coated indium tin oxide substrate via the layer-by-layer self-assembly technique and characterized as-formed multilayers with UV-vis spectra and atomic force microscopy.
Resumo:
The interaction of chlorpromazine (CPZ) with supported bilaver lipid (dipalmitoyphosphatidylcholine) membrane (s-BLM) on the glassy carbon electrode (GCE) was investigated using cyclic voltammetry and ac impedance spectroscopy. The experimental data, based on the voltammetric response of Ru(NH3)(6)(3+) associated with the oxidation of CPZ on the electrode, indicated that the interaction of CPZ with s-BLM was concentration and time dependant. The interaction between them could be divided into three stages by the concentration of CPZ: low, middle and high concentration. At the first stage, s-BLM was not affected by CPZ and the interaction was only a penetration of a small quantity of CPZ molecule into s-BLM. At the second stage, the defects formed in s-BLM due to the penetration of more CPZ molecule into s-BLM. At the last stage, a high CPZ:lipid ratio reached in s-BLM, resulting in the solubilization of s-BLM. The interaction time had different effect at three stages.
Resumo:
Ibuprofen is a well-known nonsteroidal anti-inflammatory drug, which can interact with lipid membranes. In this paper, the interaction of ibuprofen with bilayer lipid membrane was studied by UV-vis spectroscopy, cyclic voltammetry and AC impedance spectroscopy. UV-vis spectroscopy data indicated directly that ibuprofen could interact with lipid vesicles. In electrochemical experiments, ibuprofen displayed a biphasic behavior on bilayer lipid membrane supported on a glassy carbon electrode. It could stabilize the lipid membrane in low concentration, while it induced defects formation, even removed off bilayer lipid membrane from the surface of the electrode with increasing concentration. The mechanism about the interaction between ibuprofen and supported bilayer lipid membrane was discussed.
Resumo:
The purpose of the present work is to investigate the compositional difference of polypropylene-polyethylene block copolymers (PP-b-PE) manufactured industrially by the process of degradation and hydrogenation, respectively. Each of the PP-b-PE copolymers was fractionated into three fractions with heptane and chloroform. The compositions of the three fractions were characterized by C-13 nuclear magnetic resonance (NMR) and Fourier transform infrared (FTIR) spectroscopy, as well as differential scanning calorimetry (DSC) and thermal fractionation. The results showed that the Chloroform-soluble fraction was amorphous ethylene-propylene rubber, and the content of the rubber in PP-b-PE manufactured by hydrogenation was less than that by degradation. The degree of crystallinity of the chloroform-insoluble fraction of the PP-b-PE manufactured by hydrogenation is higher than that of by degradation.
Resumo:
The growth of cationic lipid dioctadecyldimethylammonium bromide (DODAB) toward bilayer lipid membrane (BLM) by solution spreading on cleaved mica surface was studied by atomic force microscopy (AFM). Bilayer of DODAB was formed by exposing mica to a solution of DODAB in chloroform and subsequently immersing into potassium chloride solution for film developing. AFM studies showed that at the initial stage of the growth, the adsorbed molecules exhibited the small fractal-like aggregates. These aggregates grew up and expanded laterally into larger patches with time and experienced from monolayer to bilayer, finally a close-packed bilayer film (5.4 +/- 0.2 nm) was approached. AFM results of the film growth process indicated a growth mechanism of nucleation, growth and coalescence of dense submonolayer, it revealed the direct information about the film morphology and confirmed that solution spreading was an effective technique to prepare a cationic bilayer in a short time.
Resumo:
In order to improve its thermal stability, poly(propylene carbonate)(PPC) was end-capped by different active agents. Thermogravimetric data show that the degradation temperature of uncapped PPC was lower than that of end-capped PPC. The kinetic parameters of thermal degradation of uncapped and end-capped PPC were calculated according to Chang's method. The results show that different mechanisms operate during the whole degradation temperature range for uncapped PPC. In the first stage, chain unzipping dominates the degradation. With increasing temperature, competing multi-step reactions occur. In the last stage, random chain scission plays an important role in degradation. For end-capped PPC, random chain scission dominates the whole degradation process.