127 resultados para extrinsic resistance
Resumo:
Plasma-sprayed 8YSZ (zirconia stabilized with 8 wt% yttria)/NiCoCrAlYTa thermal barrier coatings (TBCs) were laser-glazed using a continuous-wave CO2 laser. Open pores within the coating surface were eliminated and an external densified layer was generated by laser-glazing. The hot corrosion resistances of the plasma-sprayed and laser-glazed coatings were investigated. The two specimens were exposed for the same period of 100 h at 900 degrees C to a salt mixture of vanadium pentoxide (V2O5) and sodium sulfate (Na2SO4). Serious crack and spallation occurred in the as-sprayed coating, while the as-glazed coating exhibited good hot corrosion behavior and consequently achieved a prolonged lifetime. The results showed that the as-sprayed 8YSZ coating achieved remarkably improved hot corrosion resistance by laser-glazing.
Resumo:
We have observed, respectively, a negative differential resistance (NDR) and switching conduction in current-voltage (I-V) characteristics of organic diodes based on copper phthalocyanine (CuPc) film sandwiched between indium-tin-oxide (ITO) and aluminum (Al) by controlling the evaporation rate. The NDR effect is repeatable which can be well, controlled by sweep rate and start voltage, and the switching exhibits write-once-read-many-times (WORM) memory characteristics. The traps in the organic layer and interfacial dipole have been used to explain the NDR effect and switching conduction. This opens up potential applications for CuPc organic semiconductor in low power memory and logic circuits.
Resumo:
Negative differential resistance (NDR) and memory effect were observed in diodes based on 1,4-dibenzyl C60 (DBC) and zinc phthalocyanine doped polystyrene hybrid material. Certain negative starting sweeping voltages led to a reproducible NDR, making the hybrid material a promising candidate in memory devices. It was found that the introduction of DBC enhanced the ON/OFF current ratio and significantly improved the memory stability. The ON/OFF current ratio was up to 2 orders of magnitude. The write-read-erase-reread cycles were more than 10(6), and the retention time reached 10 000 s without current degradation.
Resumo:
The authors observed a negative differential resistance (NDR) in organic devices consisting of 9,10-bis-(9,9-diphenyl-9H-fluoren-2-yl)-anthracene (DPFA) sandwiched between Ag and indium tin oxide electrodes. The large NDR shown in current-voltage characteristics is reproducible, resulting in that the organic devices can be electrically switched between a high conductance state (on state) and a low conductance state (off state). It can be found that the currents at both on to off states are space-charge limited and attributed to the electron traps at the Ag/DPFA interface. The large and reproducible NDR makes the devices of tremendous potential in low power memory and logic circuits.
Resumo:
The PVP/lanthanum nitrate/zirconium oxychloride (PVP-precursor) nanofiber was prepared by electrospinning technique. Lanthanum zirconate (La2Zr2O7, LZ) in the nanofiber is formed after calcination at 800 degrees C and the nanofiber with pyrochlore structure and a diameter of 100-500 nm can be obtained by calcination of the above precursor fiber at 1000 degrees C for 12 h. The surface of the fiber is rough but the continuous microstructure is still maintained after calcination. LZ fibers stack randomly, resulting in a structure with a low contact area between the fibers. This special structure makes the fiber to have a high resistance to sintering at elevated temperatures. The BET (Brunauer-Emmett-Teller) specific surface areas of the LZ fiber and powder calcined at different temperatures are shown in this paper, and the fiber was characterized by TG-DTA (thermal gravimetry-differential thermal analysis), XRD (X-ray diffraction), N-2 absorption-desorption porosimetry and SEM (scanning electron microscopy).
Resumo:
Negative differential resistance ( NDR) and multilevel memory effects were obtained in organic devices consisting of an anthracene derivative, 9,10-bis-{ 9,9-di-[ 4-(phenyl-p-tolyl-amino)-phenyl]-9H-fluoren-2-yl}-anthracene ( DAFA), sandwiched between Ag and ITO electrodes. The application of a negative bias voltage leads to negative differential resistance in current-voltage characteristics and different negative voltages produce different conductance currents, resulting in the multilevel memory capability of the devices. The NDR property has been attributed to charge trapping at the DAFA/Ag interface. This opens up a wide range of application possibilities of such organic-based NDR devices in memory and logic circuits.
Resumo:
The dependence of the performance of organic light-emitting devices(OLEDs) on the sheet resistance of indium-tin-oxide(ITO) anodes was investigated by measuring the steady state current density brightness voltage characteristics and the electroluminescent spectra. The device with a higher sheet resistance anode shows a lower current density, a lower brightness level, and a higher operation voltage. The electroluminescence(EL) efficiencies of the devices with the same structure but different ITO anodes show more complicated differences. Furthermore, the shift of the light-emitting zone toward the anode was found when an anode with a higher sheet resistance was used. These performance differences are discussed and attributed to the reduction of hole injection and the increase in voltage drop over ITO anode with the increase in sheet resistance.