137 resultados para alkali activated slag concretes
Resumo:
A series of aryl hydroxylactams (2a, 2b, 2d-2g, 2i-2k, 2m, and 2n) was synthesized by partially reducing aryl cyclic imides in moderate to excellent yields with activated zinc dust alone in acetic acid. This method was regiospecific and can be employed as an alternative for reported methods to partially reduce aryl cyclic imides.
Resumo:
Samarium and manganese co-doped zinc borosilicate storage glasses were prepared by high temperature solid state method. The effect of doping samarium on the defect of Mn activated sample was studied by means of thermoluminescence spectra. It was found that the shallower traps of the sample predominate with the addition of samarium, as a result, the phosphorescence and storage properties of the manganese doped zinc borosilicate glasses were greatly changed.
Resumo:
In this paper, a calix[4]arene derivative, 5,11,17,23-butyl-25,26,27,28-tetra-(ethanoxycarbonyl)-methoxy-calix[4]arene (L), is investigated as a host to recognize alkali metal ions (Li+, Na+, K+, Rb+ and Cs+) at the interface between two immiscible electrolyte solutions (ITIES). Well-defined cyclic voltammograms are obtained at the micro- and nano-water \ 1,2-dichloroethane (W \ DCE) interfaces supported at micro- and nano-pipets.
Resumo:
A series of solid electrolytes, (Ce(0.8)Ln(0.2))(1 - x)MxO2 - delta(Ln = La, Nd, Sm, Gd, M:Alkali-earth), were prepared by amorphous citrate gel method. XRD patterns indicate that a pure fluorite phase is formed at 800 degreesC. The electrical conductivity and the AC impedance spectra were measured. XPS spectra show that the oxygen vacancies increase owing to the MO doping, which results in the increase of the oxygen ionic transport number and conductivity. The performance of ceria-based solid electrolyte is improved. The effects of rare-earth and alkali-earth ions on the electricity were discussed. The open-circuit voltages and maximum power density of planar solid oxide fuel cell using (Ce0.8Sm0.2)(1 - 0.05)Ca0.05O2 - delta as electrolyte are 0.86 V and 33 mW . cm(-2), respectively.
Resumo:
The optical properties of rare earth ions-activated barium orthophosphate phosphors, Ba-3(PO4)(2):RE (RE = Ce3+, Sm3+, Eu3+, Eu2+, and Tb3+), were investigated in vacuum ultraviolet (VLTV)-Vis range. A band-band transition Of PO43- in Ba-3(PO4)(2) is observed in the region of 150-170 nm. The partial reduction of Eu3+ to Eu2+ was observed and confirmed by luminescent spectra under the VUV-UV excitation. It is proposed that the electronegative defects that formed by aliovalent substitution of Eu3+ on the Ba2+ site in the host are responsible for the reduction process.
Resumo:
In this paper, a novel monoaza-B15C5 derivative, N-(2-tosylamino)-isopentyl-monoaza-15-crown-5 (L), is used as an ionophore to facilitate alkali metal cations transfer across a water/1,2-dichloroethane (W/DCE) interface. Well-defined voltammetric behaviors are observed at the polarized W/DCE interfaces supported at micro- and nano-pipets except Cs+. The diffusion coefficient of this ionophore in the DCE phase is calculated to be equal to (3.3+/-0.2) x 10(-6) cm(2) s(-1). The experimental results indicate that a 1:1 (metal: ionophore) complex is formed at the interface with a TIC/TID mechanism. The selectivity of this ionophore towards alkali ions follows the sequence Na+ > Li+ > K+ > Rb+ > Cs+. The logarithm of the association constants (log beta(1)(0)) of the LiL+, NaL+, KL+ and RbL+ complexes in the DCE phase are calculated to be 10.6, 11.6, 9.0 and 7.1, respectively. The kinetic parameters are determined by steady-state voltammograms using nanopipets. The standard rate constants (k(0)) for Li+, Na+, K+ and Rb+ transfers facilitated by L are 0.54+/-0.05, 0.63+/-0.09, 0.51+/-0.04 and 0.46+/-0.06 cm s(-1), respectively. The pH values of aqueous solution have little effect on the electrochemical behaviors of these facilitated processes. The results predicate that this new type of ionophore might be useful to fabricate electrochemical sensor of sodium ion.
Resumo:
Facilitated alkali metal ion (M+= Li+, Na+, K+, Rb+, and Cs+) transfers across the micro- and nano-water/1,2-dichloroethane (W/DCE) interfaces supported at the tips of micro- and nanopipets by dibenzo-18-crown-6 (DB18C6) have been investigated systematically using cyclic voltammetry. The theory developed by Matsuda et al. was applied to estimate the association constants of DB18C6 and M+ in the DCE phase based on the experimental voltammetric results. The kinetic measurements for alkali metal ion transfer across the W/DCE interface facilitated by DB18C6 were conducted using nanopipets or-submicropipets, and the standard rate constants (k(0)) were evaluated by analysis of the experimental voltammetric data. They increase in the following order: k(Cs+)(0) < k(Li+)(0) < k(Rb+)(0) < k(Na+)(0) < k(K+)(0), which is in accordance with their association constants except Cs+ and Li+.
Resumo:
XAFS (EXAFS and XANES) at Eu-L-3 edge were used to determine the local structure and the valences of europium in CaBPO5:Eu prepared in air. The results of EXAFS showed that the doped europium atoms were nine-coordinated by oxygen atoms and the distances of bond Eu-O were 2.39 Angstrom in the host lattice. XANES at Eu-L-3 edge exhibited that Eu2+ and Eu3+ coexisted in the matrix. The luminescent spectrum of the material excited by VUV at 147 nm presented a similar spectrum with that excited by f-f transition of Eu2+ at 396 nm and f-d transition of Eu2+ at 312 nm. The broad emission band due to both 4f(6)5d - 4f(7) transition of EU2+ and f - f transition of Eu3+ could be observed in emission spectra, which indicated that the trivalent europium ions were reduced in air in the matrix at high temperature by the defects [V-Cn]" formed by aliovalent substitution between Ca2+ and Eu3+ ions. The UV excitation spectrum showed the typical f-f transition of Eu3+ and f-d transition of Eu2+. The bands with the maxima at about 113 and 158 nm in VUV excitation spectrum were assigned to originate from the absorption of the host lattice.