287 resultados para Structural and optical properties


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using a solution-based chemical method, we have prepared ZnS nanocrystals doped with high concentration of Mn2+. The X-ray diffraction analysis confirmed a zinc blende structure. The average size was about 3 nm. Photoluminescence spectrum showed room temperature emission in the visible spectrum, which consisted of the defect-related emission and the T-4(1)-(6)A(1) emission of Mn2+ ions. Compared with the undoped sample, the luminescence of the ZnS:Mn sample is enhanced by more than an order of magnitude, which indicated that the Mn2+ ions can efficiently boost the luminescence of ZnS nanocrystals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

InGaN/GaN quantum dots were grown on the sapphire (0 0 0 1) substrate in a metalorganic chemical vapor deposition system. The morphologies of QDs deposited on different modified underlayer (GaN) surfaces, including naturally as grown, Ga-mediated, In-mediated, and air-passivated ones, were investigated by atomic force microscopy (AFM). Photo luminescence (PL) method is used to evaluate optical properties. It is shown that InGaN QDs can form directly on the natural GaN layer. However, both the size and distribution show obvious inhomogeneities. Such a heavy fluctuation in size leads to double peaks for QDs with short growth time, and broad peaks for QDs with long growth time in their low-temperature PL spectra. QDs grown on the Ga-mediated GaN underlayer tends to coalesce. Distinct transform takes place from 3D to 2D growth on the In-mediated ones, and thus the formation of QDs is prohibited. Those results clarify Ga and In's surfactant behavior. When the GaN underlayer is passivated in the air, and together with an additional low-temperature-grown seeding layer, however, the island growth mode is enhanced. Subsequently, grown InGaN QDs are characterized by a relatively high density and an improved Gaussian-like distribution in size. Short surface diffusion length at low growth temperature accounts for that result. It is concluded that reduced temperature favors QD's 3D growth and surface passivation can provide another promising way to obtain high-density QDs that especially suits MOCVD system. (c) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mn ions were doped into InAs/GaAs quantum dots samples by high energy. implantation and subsequent annealing. The optical and electric properties of the samples have been studied. The photoluminescence intensity of the samples annealed rapidly is stronger than that of the samples annealed for long time. By studying the relationship between the photoluminescence peaks and the implantation dose, it can be found that the photoluminescence peaks of the quantum dots show a blueshift firstly and then move to low energy with the implantation. dose increasing. The latter change in the photoluminescence peaks is probably attributed to that Mn ions entering the InAs quantum dots, which release the strain of the quantum dots. For the samples implanted by heavy dose (annealed rapidly) and the samples annealed for long time, the resistances versus temperature curves reveal anomalous peaks around 40 K.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of GaAS(1 0 0)2 degrees substrate misorientation on the formation and optical properties of InAs quantum dots (QDs) has been studied in compare with dots on exact GaAs(1 0 0) substrates. It is shown that, while QDs on exact substrates have only one dominant size, dots on misoriented substrates are formed in lines with a clear bimodal size distribution. Room temperature photoluminescence measurements show that QDs on misoriented substrates have narrower FWHM, longer emission wavelength and much larger PL intensity relative to those of dots on exact substrates. However, our rapid thermal annealing (RTA) experiments indicate that annealing shows a stronger effect on dots with misoriented substrates by greatly accelerating the degradation of material quality. (c) 2005 Elsevier B.V All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electronic structure, electron g factors and optical properties of InAs quantum ellipsoids are investigated, in the framework of the eight-band effective-mass approximation. It is found that the light-hole states come down in comparison with the heavy-hole states when the spheres are elongated, and become the lowest states of the valence band. Circularly polarized emissions under circularly polarized excitations may have opposite polarization factors to the exciting light. For InAs ellipsoids the length, which is smaller than 35 nm, is still in a strongly quantum-confined regime. The electron g factors of InAs spheres decrease with increasing radius, and are nearly 2 when the radius is very small. The quantization of the electron states quenches the orbital angular momentum of the states. Actually, as some of the three dimensions increase, the electron g factors decrease. As more dimensions increase, the g factors decrease more. The dimensions perpendicular to the direction of the magnetic field affect the g factors more than the other dimension. The magnetic field along the z axis of the crystal structure causes linearly polarized emissions in the spheres, which emit unpolarized light in the absence of magnetic field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self-assembled InAs quantum dots (QDs) are grown on vicinal GaAs (100) substrates by using metal-organic chemical vapour deposition (MOCVD). An abnormal temperature dependence of bimodal size distribution of InAs quantum dots is found. As the temperature increases, the density of the small dots grows larger while the density of the large dots turns smaller, which is contrary to the evolution of QDs on exact GaAs (100) substrates. This trend is explained by taking into account the presence of multiatomic steps on the substrates. The optical properties of InAs QDs on vicinal GaAs(100) substrates are also studied by photoluminescence (PL). It is found that dots on a vicinal substrate have a longer emission wavelength, a narrower PL line width and a much larger PL intensity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Hamiltonian of wurtzite quantum rods with an ellipsoidal boundary under electric field is given after a coordinate transformation. The electronic structure and optical properties are studied in the framework of the effective-mass envelope-function theory. The quantum-confined Stark effect is illustrated by studying the change of the electronic structures under electric field. The transition probabilities between the electron and hole states decrease sharply with the increase of the electric field. The polarization factor increases with the increase of the electric field. Effects of the electric field and the shape of the rods on the exciton effect are also investigated. The exciton binding energy decreases with the increase of both the electric field and the aspect ratio. In the end, considering the exciton binding energy, we calculated the band gap variation of size- and shape-controlled colloidal CdSe quantum rods, which is in good agreement with experimental results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have studied the growth and optical properties of AlInGaN alloys in this article. By the measurement of three samples, we found that the incorporation of In decreases with the increase of temperature, while there is nearly no change for the incorporation of Al. The sample grown at the lowest temperature had the best material and optical properties, which owes to the high In component, because the In component can reduce defects and improve the material quality. We also used the time-resolved photoluminescence(PL) to study the mechanism of recombination of carriers, and found that the time dependence of PL intensity was not in exponential decay, but in stretched-exponential decay. Through the study of the character of this decay, we come to the conclusion that the emission comes from the recombination of localized excitons. Once more, this localization exhibites the character of quantum dots, and the stretched, exponential decay results from the hopping of carriers between different localized states. In addition, we have used the relation of emission energy dependence of carrier's lifetime and the character of radiative recombination and non-radiative combination to confirm our conclusion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

InAs quantum dots have been grown by solid source molecular beam epitaxy on different matrix to investigate the effect on the structure and optical properties. High density of 1.02 x 10(11) cm(-2) of InAs islands on In0.15Ga0.85As and In0.15Al0.85As underlying layer has been achieved. Atomic force microscopy and photoluminescence spectra show the size evolution of InAs islands on In0.15Ga0.85As underlying layer. A strong 1.3 mum photoluminescence from InAs islands on In0.15Ga0.85As underlying layer and with InGaAs strain-reduced layer has been obtained. Single-mirror light emitting diode structures with InAs quantum dots capped by InGaAs grown on InGaAs layer as active layer were fabricated and the corresponding radiative efficiency was deduced to be as high as 20.5%. Our results provide important information for optimizing the epitaxial structures of 1.3 mum wavelength quantum dots devices. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ternary Zn1-xCdxO (0less than or equal toxless than or equal to0.6) alloying films with highly c-axis orientation have been deposited on Si(111) substrates by direct current reactive magnetron sputtering method. X-ray diffraction measurement indicates that the wurtzite-type structure of ZnO can be stabilized up to nominal Cd content x similar to 0.6 without cubic CdO phase separation. The lattice parameter c of Zn1-xCdxO increases almost linearly from 5.229 Angstrom (x = 0) to 5.247 Angstrom (x = 0.6), indicating that Cd substitution takes place on the Zn lattice sites. The photoluminescence spectra of the Zn1-xCdxO thin films measured at 12 K display a substantial red shift (similar to0.3 eV) in the near-band-edges (NBEs) emission of ZnO: from 3.39 eV of ZnO to 3.00 eV of Zn0.4Cd0.6O. The direct modulation of band gap caused by Zn/Cd substitution is responsible for the red shift effect in NBE emission of ZnO. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Double X-ray diffraction has been used to investigate InGaAs/InAlAs quantum cascade (QC) laser grown on InP substrate by molecule beam epitaxy, by means of which, excellent lattice matching, the interface smoothness, the uniformity of the thickness and the composition of the epilayer are disclosed. What is more, these results are in good agreement with designed value. The largest lattice mismatch is within 0.18% and the intersubband absorption wavelength between two quantized energy levels is achieved at about lambda = 5.1 mum at room temperature. At 77 K, the threshold density of the QC laser is less than 2.6 kA/cm(2) when the repetition rate is 5 kHz and the duty cycle is 1%. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on experimental results and theoretical analysis effects of the crystal structure on the optical and electrical properties of pyrite FeS2 films produced by thermally sulfurizing iron films at various temperatures have been systematically studied. The results indicate that the crystal structure and some related factors, such as the crystallization and the stoichiometry, remarkably influence the optical and electrical performances of the pyrite films. It is also shown that the preferred orientation of the crystal grain plays a major role in determining the crystal structure and the optical and electrical properties of the pyrite FeS2 films. Also we find that it is the crystal grains, rather than the particles that exercise a decisive influence on the electrical performance of pyrite films. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structure and optical properties of In(Ga)As with the introduction of InGaAlAs or InAlAs seed dot layers are investigated. The area density and size homogeneity of the upper InGaAs dots are efficiently improved by the introduction of a buried layer of high-density dots. Our explanation for the realization of high density and size homogeneity dots is presented. When the GaAs spacer layer is too thin to cover the seed dots, the upper dots exhibit some optical properties like those of a quantum well. By analyzing the growth dynamics, we refer to this kind of dot as an empty-core dot. (C) 2003 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structure and optical properties of In(Ga)As grown with the introduction of InGaAlAs or InAlAs seed dots layers are investigated. The area density and size homogeneity of the upper InGaAs dots are efficiently improved with the introduction of a layer of high-density buried dots. When the GaAs spacer layer is too thin to cover the seed dots, the upper dots exhibit the characterization of a quantum well. By analyzing the growth dynamics, we refer to it as an empty-core structure dot. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Hamiltonian of the wurtzite quantum rods with an ellipsoidal boundary is given after a coordinate transformation. The energies, wave functions, and transition possibilities are obtained as functions of the aspect ratio e with the same method we used on spherical dots. With an overall consideration of both the transition matrix element and the Boltzmann distribution we explained why the polarization factor increases with increasing e and approaches a saturation value, which tallies quite well with the experimental result. When e increases more and more S-z states are mixed into the ground, second, and third states of J(z)=1/2, resulting in an increase of the emission of z polarization. It is just the linear terms of the momentum operator in the hole Hamiltonian that cause the mixing of S and P states in the hole ground state. The effects of the crystal field splitting energy, temperature, and transverse radius to the polarization are also considered. We also calculated the band gap variation with the size and shape of the quantum rods.