176 resultados para Solar heating.
Resumo:
In this work, we investigate the dissociation behavior of natural gas hydrate in a closed system with microwave (MW) heating and hot water heating. The hydrate was formed at temperatures of 1-4 degrees C and pressures of 4.5-5.5 MPa. It was found that the gas hydrate dissociated more rapidly with microwave than with hot water heating. The rate of hydrate dissociation increased with increasing microwave power, and it was a function of microwave power. Furthermore, the temperature of the hydrate increased linearly with time during the microwave radiation.
Resumo:
We study the effects of pulse heating parameters on the micro bubble behavior of a platinum microheater (100 mu m x 20 mu m) immersed in a methanol pool. The experiment covers the heat fluxes of 10-37 MW/m(2) and pulse frequencies of 25-500 Hz. The boiling incipience is initiated at the superheat limit of methanol, corresponding to the homogeneous nucleation. Three types of micro boiling patterns are identified. The first type is named as the bubble explosion and regrowth, consisting of a violent explosive boiling and shrinking, followed by a slower bubble regrowth and subsequent shrinking, occurring at lower heat fluxes. The second type, named as the bubble breakup and attraction, consists of the violent explosive boiling, bubble breakup and emission, bubble attraction and coalescence process, occurring at higher heat fluxes than those of the first type. The third type, named as the bubble size oscillation and large bubble formation, involves the initial explosive boiling, followed by a short periodic bubble growth and shrinking. Then the bubble continues to increase its size, until a constant bubble size is reached which is larger than the microheater length.
Resumo:
To investigate factors limiting the performance of a GaAs solar cell, genetic algorithm is employed to fit the experimentally measured internal quantum efficiency (IQE) in the full spectra range. The device parameters such as diffusion lengths and surface recombination velocities are extracted. Electron beam induced current (EBIC) is performed in the base region of the cell with obtained diffusion length agreeing with the fit result. The advantage of genetic algorithm is illustrated.
Resumo:
In this report we present the effects of 1 MeV-electron irradiation on i a-Si:H films and solar cells. It is observed that in the dose range of 1.4-8.4 x 10(15) cm(-2) the defect creation has not reached its saturation level and the metastable defects caused by the irradiation cannot be completely removed by a two hour annealing at 200 degrees C for i a-Si:H films or at 130 degrees C for a-Si:H solar cells. The results may be understood in terms of a model based on two kinds of metastable defects created by 1 MeV-electron irradiation.
Resumo:
A comparatively low-quality silicon wafer (with a purity of almost-equal-to 99.9%) was adopted to form a silicon-on-defect-layer (SODL) structure featuring improved crystalline silicon near the defect layer (DL) by means of proton implantation and subsequent annealing. Thus, the SODL technique provides an opportunity to enable low-quality silicon wafers to be used for fabrication of low-cost solar cells.