99 resultados para SOLID-STATE STRUCTURES
Resumo:
Microstructures and electrochemical properties of Ti0.26Zr0.07V0.21Mn0.1Ni0.33Mox (x=0,0.025,0.05,0.075, 0.10) electrode alloys have been investigated. The results of XRD analysis show that the alloys are mainly composed of V-based solid solution phase with body centered cubic (bcc) structure and C14 Laves phase with hexagonal structure. The addition of Mo element can imp ove the activation characteristics, maximum discharge capacity and cyclic durability for the electrode alloys
Structures and physical properties of n=3 Ruddlesden-Popper compounds Ca4Mn3-xNbxO10 (0 <= x <= 0.2)
Resumo:
The Ruddlesden-Popper series of compounds Ca4Mn3-xNbxO10(x = 0-0.2) have been prepared by solid-state methods. Structural, magnetic, electrical, and magnetoresistive studies were performed on the compounds. Nb doping caused increases in both unit cell volume and octahedral distortion. The magnetization measurements indicated that the doped samples displayed ferromagnetism-like behavior, which could be explained by the double-exchange interaction between Mn4+ and Mn3+ induced by the charge-compensation effect.
Resumo:
The linear thermal expansion coefficients of ABO(4) compounds are determined and the expansion tendency is analyzed from the chemical bond viewpoint. All chemical bonds contributions are involved. The contributions from different chemical bonds are compared with each other and the origin of the expansion behavior of ABO(4) oxides is revealed that the A-O bonds expansions dominate the compound expansion. The calculated expansion coefficients agree satisfactorily with the experimental data. By analyzing the expansion regularity the range of the expansion coefficients can be qualified. The thermal expansion coefficients of some ABO(4) compounds having not been measured are predicted and discussed.
Resumo:
Reaction of 3-(2-pyridylmethyl)indenyl lithium (1) with LnI(2)(THF)(2) (Ln = Sm, Yb) in THF produced the divalent organolanthanides (C5H4NCH2C9H6)(2)Ln(II)(THF) (Ln = Sm (2), Yb (3)) in high yield. 1 reacts with LnCl(3) (Ln = Nd, Sm, Yb) in THF to give bis(3-(2-pyridylmethyl)indenyl) lanthanide chlorides (C5H4NCH2C9H6)(2)Ln(III)Cl (Ln = Nd (4), Sm (5)) and the unexpected divalent lanthanides 3 (Ln = Yb). Complexes 2-5 show more stable in air than the non-functionalized analogues. X-ray structural analyses of 2-4 were performed. 2 and 3 belong to the high symmetrical space group (Cmcm) with the same structures, they are THF-solvated 9-coordinate monomeric in the solid state, while 4 is an unsolvated 9-coordinate monomer with a trans arrangement of both the side-arms and indenyl rings in the solid state. Additionally, 2 and 3 show moderate polymerization activities for F-caprolactone (CL).
Resumo:
Reaction of two equivalents of tetrahydrofurfuryl indenyl lithium with anhydrous lanthanide trichlorides in THF afforded bis(tetrahydrofurfurylindenyl) lanthanide chlorides (C4H7OCH2C9H6)(2)LnCl, Ln=La(l), Pr(2), Lu(3). Complexes I and 3 are characterized by single-crystal analysis. The results of crystal structural determination reveal that they are 9-coordinate monomeric intramolecular complexes with a trans arrangement of both the sidearms and indenyl rings in the solid state. The effects of rare earth ionic radii on the structures Of (C4H7OCH2C9H6)(2)LnCl are discussed.
Resumo:
In this paper, four new luminescent silver(I) sulfonate complexes with PPh3, namely Ag(L1)(PPh3)(2) (1), Ag(L2)(PPh3)(3) (2), [Ag-2(L3)(PPh3)(4) (H2O)center dot 1.5CH(3)CN center dot 0.5H(2)O (3) and [Ag-4(L4)(PPh3)(10)]center dot 8H(2)O (4), where L1=p-toluenesulfonate, L2=1-naphthalenesulfonate, L3=3-carboxylate-4-hydroxybenzenesulfonate, L4=1, 3, 6, 8-pyrenetetrasulfonatc and PPh3=triphenylphosphine, have been synthesized and characterized. The crystal structures were determined by single-crystal X-ray diffraction method. Compounds 1, 2, 3 and 4 adopt discrete structures rather than polymeric structures. Compounds I and 2 show mononuclear structures while 3 and 4 are dinuclear and tetranuclear molecules, respectively. Moreover the numbers of PPh3 molecules coordinating to one silver center are two or three. The photoluminescent properties of 1, 2 and 3 are discussed.
Resumo:
The self-assembly of poly(di-n-butylsilane) (PDBS) and poly(di-n-hexylsilane) (PDHS) on the surfaces of amorphous carbon and highly oriented pyrolytic graphite (HOPG) have been investigated, respectively. The morphology and structures of these self-assembled thin films were studied by using atomic force microscopy, transmission electronic microscopy, and wide-angle X-ray diffraction. In the case of weak van der Waals interactions between absorbed molecules and substrate, i.e., on amorphous carbon, the self-assembly process was driven by absorbate-absorbate intermolecular interactions. For PDBS with weak absorbate-absorbate intermolecular interactions, the thin film showed organization lacking any measurable preferred orientation on the surface of amorphous carbon. While for PDHS with rigid backbone and strong intermolecular interactions, flat-on lamellae with silicon backbones perpendicular to the surface of amorphous carbon were formed. However, in the case of strong van der Waals interactions between absorbed molecules and substrate, i.e., on HOPG, the self-assembly process was tailored by the balance of absorbate-absorbate intermolecular interactions and molecule-substrate interactions. Both PDHS and PDBS thin films grew into edge-on lamellae on the surface of HOPG, which aligned according to a Mold symmetry.
Resumo:
Reaction of anhydrous lanthanide trichlorides with tetrahydrofurfuryl indenyl lithium in THF afforded bis(tetrahydrofurfurylindenyl) lanthanocene chlorides complexes (C4H7OCH2C9H6)(2) LnCl, Ln = Nd (1), Sm (2), Dy (3), Ho (4), Er (5), Yb (6). The X-ray crystallographic structures of all the six complexes were determined and these indicate that they are unsolvated nine-coordinate monomeric complexes with a trans arrangement of both the sidearm and indenyl rings in the solid state. They belong to the same crystal system (orthorhombic) and space group (P2(1)2(1)2(1)) with the same structure. Especially, they are more stable to air and moisture than the corresponding unsubstituted indenyl lanthanide complexes.