98 resultados para RADICAL-CATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Azadirachtin (Az), as a botanical insecticide, is relatively safe and biodegradable. It affects a wide vaariety of biological processes, including the reduction of feeding, suspension of molting, death of larvae and pupae, and sterility of emerged adults in a dose-dependent manner. However, the mode of action of this toxin remains obscure. By using ion chromatography, we analyzed changes in six inorganic cation (Li+, Na+, NH4+, K+, Mg2+, and Ca2+) distributions of the whole body and hemolymph in Ostrinia furnacalis (G.) after exposure to sublethal doses of Az. The results showed that Az dramatically interfered with Na+, NH4+, K+, Mg2+, and Ca2+ distributions in hemolymph of O. furnacalis (G.) and concentrations of these five cations dramatically increased. However, in the whole body, the levels of K+, Mg2+, and Ca2+ significantly, decreased after exposure to Az, except that Na+ and NH4+ remained constant. Li+ was undetected in both the control and treated groups in the whole body and hemolymph. It is suggested that Az exerts its insecticidal effects on O. furnacalis (G.) by interfering with the inorganic cation distributions related to ion channels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Separation of small peptides on ion-exchange capillary electrochromatography (IE-CEC) with strong cation-exchange packing (SCX) as stationary phase was investigated. It was observed that the number of theoretical plates for small peptides varied from 240 000 to 460 000/m, and the relative standard deviation for t(0) and the migration time of peptides were less than 0.57% and 0.27%, respectively for ten consecutive runs. Unusually high column efficiency has been explained by the capillary electrophoretic stacking and chromatofocusing phenomena during the injection and separation of positively charged peptides. The sample buffer concentration had a marked effect on the column efficiency and peak area of the retained peptides. The influences of the buffer concentration and pH value as well as the applied voltage on the separation were investigated. It has been shown that the electrostatic interaction between the positively charged peptides and the SCX stationary phase played a very important role in IE-CEC, which provided the different separation selectivity from those in the capillary electrophoresis and reversed-phase liquid chromatography. A fast separation of ten peptides in less than 3.5 min on IE-CEC by adoption of the highly applied voltage was demonstrated. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel mode of capillary electrochromatography (CEC), called dynamically modified strong cation-exchange CEC (DMSCX-CEC), is described in this paper. A column packed with a strong cation-exchange (SCX) packing material was dynamically modified with a long-chain quaternary ammonium salt, cetyltrimethylammonium bromide (CTAB), which was added to the mobile phase. CTAB ions were adsorbed onto the surface of the SCX packing material, and the resulting hydrophobic layer on this packing was used as the stationary phase. Using the dynamically modified SCX column, neutral solutes were separated with the CEC mode. The highest number of theoretical plates obtained was about 190 000/m, and the relative standard deviations (RSD's) for migration times and capacity factors of alkylbenzenes were less than 1.0% and 2.0% for five consecutive runs, respectively. The effects of CTAB and methanol concentrations and the pH value of the mobile phase on the electroosmotic flow and the separation mechanism were investigated. Excellent simultaneous separation of the basic and neutral solutes in DMSCX-CEC with a high-pH mobile phase was obtained, A mixture containing the acidic, basic, and neutral compounds was well separated in this mode with a low-pH mobile phase; however, peak tailing for basic compounds was observed in this mobile phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A monolithic silica based strong cation-exchange stationary phase was successfully prepared for capillary electrochromatography. The monolithic silica matrix from a sol-gel process was chemically modified by treatment with 3-mercaptopropyltrimethoxysilane followed by a chemical oxidation procedure to produce the desired function. The strong cation-exchange stationary phase was characterized by its substantial and stable electroosmotic flow (EOF), and it was observed that the EOF value of the prepared column remained almost unchanged at different buffer pH values and slowly decreased with increasing phosphate concentration in the mobile phase. The monolithic silica column with strong cation-exchange stationary phase has been successfully employed in the electrochromatographic separation of beta-blockers and alkaloids extracted from traditional Chinese medicines (TCMs). The column efficiencies for the tested beta-blockers varied from 210,000 to 340,000 plates/m. A peak compression effect was observed for atenolol with the mobile phase having a low phosphate concentration.