95 resultados para Quantum-systems


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Deep-level transient spectroscopy and photoluminescence studies have been carried out on structures containing self-assembled InAs quantum dots formed in GaAs matrices. The use of n- and p-type GaAs matrices allows us to study separately electron and hole levels in the quantum dots by the deep-level transient spectroscopy technique. From analysis of deep-level transient spectroscopy measurements it follows that the quantum dots have electron levels 130 meV below the bottom of the GaAs conduction band and heavy-hole levels at 90 meV above the top of the GaAs valence band. Combining with the photoluminescence results, the band structures of InAs and GaAs have been determined. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this report, we have investigated the temperature and injection power dependent photoluminescence in self-assembled InAs/GaAs quantum dots (QDs) systems with low and high areal density, respectively. It was found that, for the high-density samples, state filling effect and abnormal temperature dependence were interacting. In particular, the injection power-induced variations were most obvious at the temperature interval where carriers transfer from small quantum dots (SQDs) to large quantum dots (LQDs). Such interplay effects could be explained by carrier population of SQDs relative to LQDs, which could be fitted well using a thermal carrier rate equation model. On the other hand, for the low density sample, an abnormal broadening of full width at half maximum (FWHM) was observed at the 15-100 K interval. In addition, the FWHM also broadened with increasing injection power at the whole measured temperature interval. Such peculiarities of low density QDs could be attributed to the exciton dephasing processes, which is similar to the characteristic of a single quantum dot. The compared interplay effects of high-and low-density QDs reflect the difference between an interacting and isolated QDs system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Within the framework of the improved isospin-dependent quantum molecular dynamics (ImIQMD) model,he fusion dynamics of symmetric reaction systems are investigated systematically. Calculations show that the number of nucleon transfer in the neck region is appreciably dependent on the incident energies, but strongly on he reaction systems. A comparison of the neck dynamics is performed for the symmetric reactions 58Ni+58Niand 64Ni+64Ni at energies in the vicinity of the Coulomb barrier. An increase of the ratios of the neutron to proton in the neck region at initial collision stage is observed and obvious for the latter system, which reduces the fusion barrier of two colliding nuclei. The distribution of the dynamical fusion barriers and the fusion excitation functions are calculated and compared with the available experimental data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An isospin-dependent quantum molecular dynamical model (IQMD) is developed, with the isospin degree of freedom in the momentum-dependent interaction(MDI) included in IQMD, to obtain an isospin- and momentum-dependent interaction (IMDI) in IQMD. We investigate the effect of IMDI on the isospin fractionation ratio and its dynamical mechanism in the intermediate energy heavy ion collisions. It is found that the IMDI induces the significant reductions in the isospin fractionation ratio for all of beam energies, impact parameters, neutron-proton ratios and mass number of colliding systems. However, the strong dependence of isospin fractionation ratio on the symmetrical potential is preserved, with the isospin degree of freedom included in the MDI, i.e. the isospin fractionation ratio is still a good probe for extracting the information about the equation of state of isospin asymmetrical nuclear matter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple and sensitive assay system for glucose based on the glutathione (GSH)-capped CdTe quantum dots (QDs) was developed. GSH-capped CdTe QDs exhibit higher sensitivity to H2O2 produced from the glucose oxidase catalyzed oxidation Of glucose, and are also more biocompatible than other thiols-capped QDs. Based on the quenching of H2O2 on GSH-capped QDs, glucose can be detected. The detection conditions containing reaction time, the concentration of glucose oxidase and the sizes of QDs were optimized and the detection limits for glucose was determined to be 0.1 mu M; two detection ranges of glucose from 1.0 mu M to 0.5 mM and from 1.0 mM to 20 mM, respectively Were obtained. The detection limit was almost a 1000 times lower than other QDs-based optical glucose sensing systems. The developed glucose detection system was simple and facile with no need of complicated enzyme immobilization and modification of QDs.