152 resultados para Poly(vinyl chloride)
Resumo:
A novel amperometric biosensor for quantification of the electrochemically inert polar organic solvents based on tyrosinase electrode was preliminarily reported. The biosensor was fabricated by simply syringing an aqueous solution of tyrosinase/PVAVP (PVAVP: copolymer of poly(vinyl alcohol) grafting with 4-vinylpyridine) onto glassy carbon electrode surface followed by drying the modified electrode at +4 degrees C in a refrigerator. The current generated from electrochemical reduction of quinone is a probe signal. The biosensor can be used for quantification of polar organic solvents, and its mechanism was characterized with in situ steady-state amperometry-quartz crystal microbalance experiments. The detection limit, sensitivity, and dynamic range for certain organic solvents are dependent on the kind and concentration of the substrate probe and the hydrophobicity of the immobilization matrix. The response time for all the tested organic solvents is less than 2 min.
Resumo:
The graft copolymerization of butyl acrylate onto poly(vinyl alcohol) with eerie ammonium nitrate as redox initiator in a aqueous medium has been investigated. The formation of graft copolymer was confirmed by means of IR, scanning electron microscopy (SEM), and wide-angle X-ray diffraction (WAXD). The percentage of mononer conversion and percentage of grafting varied with concentrations of initiator, nitric acid, monomer, macromolecular backbone (X-n = 1750, M = 80 000), reaction temperature and reaction time. Some inorganic salts and organic solvents have a great influence upon grafting. The reaction mechanism has been explored, and rate equations for the reaction are established. (C) 2000 John Wiley & Sons, Inc.
Resumo:
The assembly of alternating DNA and positively charged poly(dimethyldiallylammonium chloride) (PDDA) multilayer films by electrostatic layer-by-layer adsorption has been studied. The real-time surface plasmon resonance (BIAcore) technique was used to characterize and monitor the formation of multilayer films in solution in real time continuously. Electrochemical impedance spectroscopy (EIS) and UV-vis absorbance measurements were also used to study the film assembly, and linear film growth was observed. All the results indicate that the uniform multilayer can be obtained on the poly(ethylenimine)- (PEI-) coated substrate surface. The kinetics of the adsorption of DNA on PDDA surface was also studied by the real-time BIAcore technique; the observed rate constant was calculated using a Langmuir model (k(obs) = (1.28 +/- 0.08) x 10(-2) s(-1).
Resumo:
Multilayer films were fabricated by layer-by-layer electrostatic deposition techniques between poly(diallyIdimethylammonium chloride) (PDDA) and calf thymus DNA (CT DNA) on glassy carbon and quartz substrates. Electrochemical impedance spectroscopy (EIS), Fourier transform infrared (FTIR) spectroscopy and UV-vis spectroscopy demonstrated the uniform assembly of PDDA/DNA multilayer films, and X-ray photoelectron spectroscopy confirmed the elemental composition of the films. Moreover, the interaction of DNA in PDDA/DNA films with methyl green was investigated by UV-vis spectroscopy and circular dichroism (CD). (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Electroluminescent devices using a ternary europium complex Eu(DBM)(3)(hhpy)(2) (dibenzoylmethane, DBM; hexahydro pyridine, hhpy) as an emitting layer, poly(vinyl-carbazole) (PVK) as a hole-transporting material and tris-(8-hydroxyquinoline) aluminum (Alq(3)) as an electron-transporting material have been fabricated. When only using Eu(DBM)(3)(hhpy)(2) as the emitting layer, luminance of 2.52 cd/m(2) with pure Eu3+ EL emissions from devices is achieved. Introducing a hole transporting material PVK and an electron transporting material 2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxidiazole (PBD) in the emitting layer, luminance of 100cd/m(2) is achieved, and the eletroluminescence efficiency is enhanced by about two orders of magnitude. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
A new type of tyrosinase biosensor was developed for the detection of phenolic compounds, based on the immobilization of tyrosinase in a sol-gel-derived composite matrix that is composed of titanium oxide sol and a grafting copolymer of poly(vinyl alcohol) with 4-vinylpyridine. Tyrosinase entrapped in the composite matrix can retain its activity to a large extent owing to the good biocompatibility of the matrix. The parameters of the fabrication process and the variables of the experimental conditions for the enzyme electrode were optimized. The resulting sensor exhibited a fast response (20 s), high sensitivity (145.5 muA mmol(-1) 1) and good storage stability. A detection limit of 0.5 muM catechol was obtained at a signal-to-noise ratio of 3.
Resumo:
A reagentless amperometric hydrogen peroxide biosensor was developed. Horseradish peroxidase (HRP) was immobilized in a novel sol-gel organic-inorganic hybrid matrix that is composed of silica sol and a grafting copolymer of poly(vinyl alcohol) with 4-vinylpyridine (PVA-g-PVP). Tetrathiafulvalene (TTF) was employed as a mediator and could lower the operating potential to -50 mV (versus Ag/AgCl). The sensor achieved 95% of the steady-state current in 15 s. Linear calibration for hydrogen peroxide was up to 1.3 mM with the detection limit of 2.5 x 10(-7)M. The enzyme electrode retained about 94% of its initial activity after 30 days of storage in a dry state at 4 degreesC.
Resumo:
Polymer blends of poly(methyl methacrylate) (PMMA) and poly(styrene-co-acrylonitrile) (SAN) with an acrylonitrile content of about 30 wt % were prepared by means of solution-casting and characterized by virtue of pressure-volume-temperature (PVT) dilatometry. The Sanchez-Lacombe (SL) lattice fluid theory was used to calculate the spinodals, the binodals, the Flory-Huggins (FH) interaction parameter, the enthalpy of the mixing, the volume change of the mixing, and the combinatorial and vacancy entropies of the mixing for the PMMA/SAN system. A new volume-combining rule was used to evaluate the close-packed volume per mer, upsilon*, of the PMMA/SAN blends. The calculated results showed that the new and the original volume-combining rules had a slight influence on the FH interaction parameter, the enthalpy of the mixing, and the combinatorial entropy of the mixing. Moreover, the spinodals and the binodals calculated with the SL theory by means of the new volume-combining rule could coincide with the measured data for the PMMA/SAN system with a lower critical solution temperature, whereas those obtained by means of the original one could not.
Resumo:
Individual hydrophobically modified ethyl hydroxyethyl cellulose (HM-EHEC) molecules under different conditions were elongated using a new atomic force microscope (AFM) based technique-single-molecule force spectroscopy (SMFS). The critical concentration of HM-EHEC for micelle-like clusters at a solid/liquid interface was around 0.8 wt %, which is lower than that in solution. The different mechanical properties of HM-EHEC below and above the critical concentration were displayed on force-extension curves. Through a comparison with unmodified hydroxyethyl cellulose, substituent-induced effects on nanomechanical features of HM-EHEC were investigated. Because of hydrophobic interactions and cooperative binding with the polymer, surfactants such as sodium dodecyl sulfate (SDS) dramatically influence the elastic properties of HM-EHEC below the critical concentration, and further addition of SDS reduces the interactions between the hydrophobic groups and the surfactant.
Resumo:
By fitting the spinodals of poly(vinyl methyl ether)/deuterated polystyrene (PVME/PSD) systems, the adjustable parameters epsilon (12)* and delta epsilon* in the Sanchez-Balasz lattice fluid (SBLF) theory could be determined for different molecular weights. According to these parameters, Flory-Huggins and scattering interaction parameters were calculated for PVME/PSD with different molecular weights by means of the SELF theory. From our calculation, Flory-Huggins and scattering interaction parameters are both Linearly dependent on the reciprocal of the temperature, and almost linearly on the concentration of PSD. Compared with the scattering interaction parameters, the Flory-Huggins interaction parameters decreased more slowly with an increase in the concentration for all three series of blends.
Resumo:
The assembly of alternating DNA and positively charged poly(dimethyldiallylammonium chloride) (PDDA) multilayer films by electrostatic layer-by-layer adsorption has been studied. Real time surface plasmon resonance (BIAcore) technique was used to characterize and monitor the formation of multilayer films in solution in real time continuously. The results indicate that the uniform multilayer can be obtained on the poly(ethylenimine) (PEI) coated substrate surface. The kinetics of the adsorption of DNA on PDDA surface was also studied by real-time BIAcore technique, and the observed rate constant was calculated using a Langmuir model (k(obs) = (1.28 +/- 0.08) x 10(-2) s(-1)).
Resumo:
Phase behaviors and heats of mixing of the miscible blends of poly(ethylene oxide) (PEO) and poly(vinyl acetate) (PVAc) with different molecular weights were investigated by DSC. A method proposed by Natasohn and Ebert et al. was adopted to estimate the binodal temperatures and the enthalpies of mixing from onset temperatures and values of areas of a series of endothermic peaks (corresponding to heats of demixing), respectively, in their heating scanning thermograms obtained with different heating rates. Phase diagrams and heats of mixing of this blending system were also predicted by using Sanchez-Lacombe lattice fluid theory. A very good agreement was obtained for both. phase behaviors and heats of mixing obtained with two different methods.
Resumo:
Cloud-point curves reported for the system polyethersulfone (PES)/phenoxy were calculated by means of the Sanchez-Lacombe (SL) lattice fluid theory. The one adjustable parameter epsilon(12)*/k (quantifying the interaction energy between mers of the different components) can be evaluated by comparison of the theoretical and experimental phase diagrams. The Flory-Huggins (FH) interaction parameters are computed based on the evaluated epsilon(12)*/k and are approximately a linear function of volume fraction and of inverse temperature. The calculated enthalpies of mixing of PES/phenoxy blends for different compositions are consistent with the experimental values obtained previously by Singh and Walsh [1].
Resumo:
A novel poly(vinyl alcohol) grafting 4-vinylpyridine self-gelatinizable copolymer was adapted to immobilize glucose oxidase. The reduction of hydrogen peroxide (H2O2) was detected at a Prussian Blue (PB) modified graphite electrode. A stable and sensitive glucose amperometric biosensor is described. The copolymer is a good biocompatible polymer in which the glucose oxidase retains high activity. Moreover, the copolymer can adhere firmly to the inorganic PB membrane. The sensor showed an apparent Michaelis-Menten constant of 18 +/- 0.2 mM and a maximum current density of 1.14 mu A cm(-2) mM(-1). The linear range is from 5 mu M to 4.5 mM glucose and the detection limit is 0.5. mu M glucose. The catalytic efficiency of PB for the reduction of H2O2 is higher than that for the oxidation of H2O2. Glucose concentrations in serum samples from healthy persons and diabetic patients were determined using the sensor. The results compared well with those provided by the hospital using a spectroscopy method.
Resumo:
A new type of sol-gel organic-inorganic hybrid material was developed and used for the production of biosensors. This material is composed of silica sol and a grafting copolymer of poly(vinyl alcohol) with 4-vinylpyridine. It prevents the cracking of conventional sol-gel-derived glasses and eliminates the swelling of the hydrogel. The optimum composition of the hybrid material was first examined, and then glucose oxidase was immobilized in this matrix to demonstrate its application. The characteristics of the biosensor were studied by cyclic voltammetry and chronoamperometry. The biosensor exhibited a series of good properties: high sensitivity (600 nA mmol(-1)L(-1)), short response time (11 s) and remarkable long-term stability in storage (at least 5 months). In addition, the characteristics of the second-generation biosensor with the use of tetrathiafulvalene as a mediator mere discussed.