188 resultados para Optical recording materials
Resumo:
The in-plane optical anisotropy of three groups of GaAs/AlGaAs quantum well structures has been studied by reflectance-difference spectroscopy (RDS). For GaAs/Al0.36Ga0.64As single QW structures, it is found that the optical anisotropy increases quickly as the well width is decreased. For an Al0.02Ga0.98As/AlAs multiple QW with a well width of 20nm, the optical anisotropy is observed not only for the transitions between ground states but also for those between the excited states with transition index n up to 5. An increase of the anisotropy with the transition energy, or equivalently the transition index n, is clearly observed. The detailed analysis shows that the observed anisotropy arises from the interface asymmetry of QWs, which is introduced by atomic segregation or anisotropic interface roughness formed during the growth of the structures. More, when the 1 ML InAs is inserted at one interface of GaAs/AlGaAs QW, the optical anisotropy of the QW can be increased by a factor of 8 due to the enhanced asymmetry of the QW. These results demonstrate clearly that the RDS is a sensitive and powerful tool for the characterization of semiconductor interfaces.
Resumo:
Using a solution-based chemical method, we have prepared ZnS nanocrystals doped with high concentration of Mn2+. The X-ray diffraction analysis confirmed a zinc blende structure. The average size was about 3 nm. Photoluminescence spectrum showed room temperature emission in the visible spectrum, which consisted of the defect-related emission and the T-4(1)-(6)A(1) emission of Mn2+ ions. Compared with the undoped sample, the luminescence of the ZnS:Mn sample is enhanced by more than an order of magnitude, which indicated that the Mn2+ ions can efficiently boost the luminescence of ZnS nanocrystals.
Resumo:
Using micro-photoluminescence technique, we observed a new photoluminescence peak about 0.348 eV above the bandgap of GaAs (E-0). By analyzing its optical characteristics, we assigned this peak to the nonequilibrium luminescence emission from the E-0 + Delta(0) bandgap in semi-insulated GaAs, which was further verified by Raman results. The observed polarization, excitation power dependence and temperature dependence of the photoluminescence spectra from the E-0 + Delta(0) energy level were very similar to those from the E-0 of GaAs. This mainly resulted from the common conduction band around Gamma(6) that was involved in the two optical transition processes, and indicated that the optical properties of bulk GaAs were mainly determined by the intrinsic properties of the conduction band. Our results demonstrated that the micro-photoluminescence technique is a powerful tool to investigate the high energy states above the fundamental bandgap in semiconductor materials.
Resumo:
For both, (Al,Ga)N with low Al content grown on a GaN nucleation layer and (AI,Ga)N with high Al content gown on an AlN nucleation layer, the inhomogeneous distribution of the luminescence is linked to the distribution of defects, which may be due to inversion domains. In the former system, defect regions exhibit a much lower Al content than the nominal one leading to a splitting of the respective luminescence spectra. In the latter system, a domain-like growth is observed with a pyramidal surface morphology and non-radiative recombination within the domain boundaries. (c) 2007 WILEYNCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Straight single-line defect optical waveguides in photonic crystal slabs are designed by the plane wave expansion method and fabricated into silicon-on-insulator (SOI) wafer by 248-nm deep UV lithography. We present an efficient way to measure the light transmission spectrum of the photonic crystal waveguide (PhC WG) at given polarization states. By employing the Mueller/Stokes method, we measure and analyse the light propagation properties of the PhC WG at different polarized states. It is shown that experimental results are in agreement with the simulation results of the three-dimensional finite-difference-time-domain method.
Resumo:
Current-based microscopic defect analysis method such as current deep level transient spectroscopy (I-DLTS) and thermally stimulated current have been developed over the years at Brookhaven National Laboratory (BNL) for the defect characterizations on heavily irradiated (Phi(n) >= 10(13) n/cm(2)) high-resistivity (>= 2 k Omega cm) Si sensors/detectors. The conventional DLTS method using a capacitance transient is not valid on heavily irradiated high-resistivity Si sensors/detectors. A new optical filling method, using lasers with various wavelengths, has been applied, which is more efficient and suitable than the traditional voltage-pulse filling. Optimum defect-filling schemes and conditions have been suggested for heavily irradiated high-resistivity Si sensors/detectors. (c) 2006 Published by Elsevier Ltd.
Resumo:
The effects of various InGaAs layers on the structural and optical properties of InAs self-assembled quantum dots (QDs) grown by molecular-beam epitaxy ( MBE) were investigated. The emission wavelength of 1317 nm was obtained by embedding InAs QDs in InGAs/GgAs quantum well. The temperature-dependent and timed-resolved photoluminescence (TDPL and TRPL) were used to study the dynamic characteristics of carriers. InGaAs cap layer may improve the quality of quantum dots for the strain relaxation around QDs, which results in a stronger PL intensity and an increase of PL peak lifetime up to 170 K. We found that InGaAs buffer layer may reduce the PL peak lifetime of InAs QDs, which is due to the buffer layer accelerating the carrier migration. The results also show that InGaAs cap layer can increase the temperature point when, the thermal reemission and nonradiative recombination contribute significantly to the carrier dynamics.
Resumo:
It is found that both methods using either continuous Sb supply or pre-deposition of a very thin Sb layer are efficient for the Sb-assisted molecular beam epitaxy growth of highly strained InGaAs/GaAs quantum wells (QWs). The emission of QWs is extended to long wavelength close to 1.25 mu m with high luminescence efficiency at room temperature. The influence of rapid thermal annealing (RTA) on the photoluminescence intensity critically depends on the annealing temperature and duration for highly strained QWs. A relatively low RTA temperature of 700 degrees C with a short duration of 10 s is suggested for optimizing the annealing effect. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Based on experimental results and theoretical analysis effects of the crystal structure on the optical and electrical properties of pyrite FeS2 films produced by thermally sulfurizing iron films at various temperatures have been systematically studied. The results indicate that the crystal structure and some related factors, such as the crystallization and the stoichiometry, remarkably influence the optical and electrical performances of the pyrite films. It is also shown that the preferred orientation of the crystal grain plays a major role in determining the crystal structure and the optical and electrical properties of the pyrite FeS2 films. Also we find that it is the crystal grains, rather than the particles that exercise a decisive influence on the electrical performance of pyrite films. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Films of high glass' transition temperature polymer polyetherketone doped with chromophore 2,2'[4-[(5-nitro-2-thiazolyl)azophenyl]-amino]-bisethanol NTAB) were prepared, poled by the corona-onset poling setup which includes a grid voltage making the surface-charge distribution uniform at elevated temperature. The thickness of the films was measured by the Model 2010 Prism Coupler system. Second harmonic generation d(33) was measured by the second harmonic generation method, and the d33 is 38.12 pm/V at 1064 nm under the absorption correction. The nonlinear optical activity maintains is 80% of its initial value. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Zn1-xMnxSe thin films with different Mn compositions are grown by metal-organic chemical vapor deposition on GaAs substrate. Good crystallinity of sample is evidenced by X-ray diffraction and rocking-curve measurements. Photoluminescence (PL) properties were carefully studied. A dominant PL peak close to the band edge is observed at low temperature for samples with higher Mn concentration. The temperature-dependent PL and time-resolved photoluminescence show that this emission peak is associated with the recombination of exciton bound to Mn-induced impurity bound states. It is found that rapid thermal annealing can induce reorganization of Mn composition in alloys and significantly reduce the density of impurity induced by Mn incorporation and improve the intrinsic interband transition. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The structure and optical properties of In(Ga)As grown with the introduction of InGaAlAs or InAlAs seed dots layers are investigated. The area density and size homogeneity of the upper InGaAs dots are efficiently improved with the introduction of a layer of high-density buried dots. When the GaAs spacer layer is too thin to cover the seed dots, the upper dots exhibit the characterization of a quantum well. By analyzing the growth dynamics, we refer to it as an empty-core structure dot. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
AlxInyGa1-x-yN epilayers have been grown by metalorganic chemical vapor deposition (MOCVD) at different temperatures from 800 to 870degreesC. The incorporation of indium is found to increase with decreasing growth temperature, while the incorporation of Al remains nearly constant. The optical properties of the samples have been investigated by photoluminescence (PL) and time-resolved photoluminescence (TRPL) at different temperatures. The results show that the sample grown at 820 C exhibits the best optical quality for its large PL intensity and the absence of the yellow luminescence. Furthermore the temperature-dependent PL and TRPL of the sample reveals its less exciton localization effect caused by alloy fluctuations. In the scanning electron microscopy measurement, much uniform surface morphology is found for the sample grown at 820degreesC, in good agreement with the PL results, The improvement of AlxInyGa1-x-yN quality is well correlated with the incorporation of indium into AlGaN and the possible mechanism is discussed. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Novel guest nonlinear optical (NLO) chromophore molecules (4-nitrobenzene)-3-azo-9-ethylcarbazole (NAEC) were doped in poly (methyl methacrylate) (PMMA) host with a concentration of approximately 15% by weight. For a useful macroscopic electro-optic (EO) effect, these NLO molecules NAEC were arranged in a noncentrosymmetric structure in the host polymer by corona-onset poling at elevated temperature (COPET). For applying NAEC-PMMA polymer in optical devices such as EO switch, its optical properties have been investigated. The UV/Visible absorption spectra for the unpoled and poled polymer film were determined. The refractive index of the film was also determined from measurements of the coupling angles with the reflective intensity at 632.8 nm wavelength. Using the simple reflection technique, the EO coefficient 33 value was measured as 60 pm/V at 632.8 nm wavelength. The second-order nonlinear coefficient d(33) was characterized by the second-harmonic-generation (SHG) experimental setup and the calculated d(33) value reached 18.4 pm/V at 1064 nm wavelength. The relation between the second-order nonlinear coefficients d(33) and d(13) for the poled polymer film was also discussed in detail and the ratio d(33)/d(13) value was obtained as 3.3. (C) 2002 Kluwer Academic Publishers.
Resumo:
Films of polyetherketone doped with the chromophores Disperse Red 1 (DR1) and Disperse Red 13 (DR13) were prepared by spin-coating method. By the in situ Second-harmonic Generation (SHG) signal intensity measurement, the optimal poling temperatures were obtained. For the investigated polyetherketone polymer doped with DR1 (DR1/PEK-c) and polyetherketone polymer doped with DR13 (DR13/PEK-c) films, the optimal poling temperatures were 150degreesC and 140degreesC, respectively. Under the optimal poling conditions, the high second-order nonlinear optical coefficient chi(33)((2)) = 11.02 pm/V has been obtained for the DR1/PEK-c; and for DR13/PEK-c at the same conditions the coefficient is 17.9 pm/V. The SHG signal intensity DR1/PEK-c could maintain more than 80% of its initial value when the temperature was under 100degreesC, and the SHG signal intensity of the DR13/PEK-c could maintain more than 80% of its initial value when the temperature was under 135degreesC. (C) 2002 Kluwer Academic Publishers.