162 resultados para Oil yield
Rice-soil-structural management and effective wheat emergence and yield in irrigated rice-wheat crop
Resumo:
本论文研究了利用三孢布拉氏霉(Blakeslea trispora)发酵产β-胡萝卜素的培养条件。主要包括:发酵培养基的确定,发酵条件的优化。还考察了发酵菌丝体中β-胡萝卜素的提取方法及薄层层析等。 首先研究了培养基成分对三孢布拉氏霉发酵产β-胡萝卜素的影响。确立了玉米淀粉作为碳源,黄豆粉(热榨)作为氮源,棉籽油作为植物油的发酵培养基配方,其成分为:玉米淀粉 3%,黄豆粉(热榨) 2%,棉籽油 3%,KH2PO4 0.2%,MgSO4·7H2O 0.2%,维生素B1 0.002%,pH值6.0。 其次,通过比较不同的发酵影响因子,分别得到最适的条件:如三孢布拉氏霉正负菌接种比例为1.3:0.7,培养基pH值为7.0(灭菌后),发酵促进因子为Triton X-100。并采用正交试验法,确定其最佳发酵条件为正负菌接种比例1.3/0.7,发酵培养基pH为7.0,在培养基中添加表面活性基Triton X-100 0.08%。使该菌株产β-胡萝卜素的量达到0.73g/L,较初始发酵条件提高了3.3倍。 研究中还找到一个简便有效的对β-胡萝卜素的提取方法,选用盐酸-热处理法进行细胞破壁,并选用沸程为60~90℃的石油醚进行萃取。 用三孢布拉霉菌丝体内类胡萝卜索的石油醚提取液点样于硅胶G板,以丙酮:石油醚(5:95)为展开剂能将β-胡萝卜素与其它类胡萝卜索分离。该方法简便快速,并有一定实用价值。 The fermentative conditions of β-carotene by Blakeslea trispora have been investigated. These conditions include fermentation medium, the optimization of some fermentation factor. The extracting methods and the TLC of carotenoids were also researched. Firstly, the effects of composition of fermentation medium on the yield of β-carotene were studied. the results showed that the best fermentation medium was corn starch 3%,soybean power 2%,cottonseed oil 3%,KH2PO4 0.2%,MgSO4·7H2O 0.2%,vitamin B1 0.002%,pH value 6.0. Secondly, through compared some factors, such as different proportion of plus and minus strains, pH value, nonionic surfactants, respective best values have been obtained. The best proportion of plus and minus strains is 1.3:0.7, pH value of fermentation medium (sterilized) is 7.0, fermentation accelerant which acts as surfactants is Triton x-100. Farther on, the fermentative conditions were optimized through orthogonal experiment, the optimization showed that proportion of plus and minus strains is 1.3:0.7,pH value is 7.0, content of Triton x-100 is 0.08%. And the yield of β-carotene reached 0.73g/L, which was up to 3.3 times through the fermentation. In the extracting study, it has showed hydrochloric acid-heat treatment is a simple, convenient and effective extracting methods is which was used to destroy the cell wall, and the extracting organic solvent is petroleum ether whose boiling range is 60~90 ℃. In the TLC experiments, extracting contents in the petroleum ether were spotted in the silicagel plate, and the mixed liquor of acetone and petroleum ether (5:95) is developping agent, which can distinguish β-carotene from other carotenoids. It is a simple and quick technique.
Resumo:
In collisions between slow F2+ ions (30 keV) and molecular targets, adenine, scattered particle production yields have been measured directly by simultaneous detection of neutrals, positive and negative ions. The relative cross-section for a negative ion formation channel was measured to be 1%. Despite a slight decrease compared to a larger target, the fullerene C-60, the measured negative ion formation cross section is still at least one order of magnitude larger than the yield in ion-atom interactions.
Resumo:
A novel method has been developed to easily isolate the mutants with high lipid yield after irradiating oleaginous yeast cells with carbon ions of energy of 80 MeV/u. Pre-selection of the mutants after ion irradiation was performed with culture medium in which the concentration of cerulenin, a potent inhibitor of fatty acid synthetase, was at 8.96 mu mol/l. Afterwards, lipid concentration in the fermentation broth of the pre-selected colonies was estimated by the sulfo-phospho-vanillin reaction instead of the conventional methanol-chloroform extraction. Two mutants with high lipid yield have been successfully selected out by the combined method. This easy and simple method is much less time-consuming but very efficient in the mutant isolation, and it has demonstrated great potential on mutation breeding in oleaginous microorganism.
Resumo:
The electron emission yield of the interaction of highly charged argon ions with silicon surface is reported. The experiment was done at the Atomic Physics Research Platform on the Electron Cyclotron Resonance (ECR) Ion Source of the National Laboratory HIRFL (Heavy Ion Research Facility in Lanzhou). In the experiment, the potential energy and kinetic energy was selected by varying the projectile charge states and extracting voltage, thus the contributions of the projectile potential energy deposition and electronic energy loss in the solid are extensively investigated. The results show that, the two main factors leading to surface electron emission, namely the potential energy deposition and the electronic energy loss, are both approximately proportional to the electron emission yield per ion.