124 resultados para Monte-carlo-simulation
Resumo:
用MonteCarlo方法系统模拟计算了以NaI晶体与BGO晶体为探测介质的clover与cluster复合式高能γ探测器的效率 .对于相同的介质几何 ,BGO复合式探测器的全能峰效率远高于相应的NaI复合式探测器 .用多块76× 1 2 7BGO晶体制作成的clover与cluster复合式高能γ探测器对 2 2 0MeV的γ光子的全能峰特征效率仍然高于 40 % ,绝对效率增加因子达 2 4与 2 7.
Resumo:
The self-assembly of diblock copolymer mixtures (A-b-B/A-b-C or A-b-B/B-b-C mixtures) subjected to cylindrical confinement (two-dimensional confinement) was investigated using a Monte Carlo method. In this study, the boundary surfaces were configured to attract blocks A but repel blocks B and C. Relative to the structures of the individual components, the self-assembled structures of mixtures of the diblock copolymers were more complex and interesting. Under cylindrical confinement, with varying cylinder diameters and interaction energies between the boundary surfaces and the blocks, we observed a variety of interesting morphologies. Upon decreasing the cylinder's diameter, the self-assembled structures of the A(15)B(15)/A(15)C(15) mixtures changed from double-helix/cylinder structures (blocks B and C formed double helices, whereas blocks A formed the outer barrel and inner core) to stacked disk/cylinder structures (blocks B and C formed the stacked disk core, blocks A formed the outer cylindrical barrel), whereas the self-assembled structures of the A(15)B(7)/B7C15 mixtures changed from concentric cylindrical barrel structures to screw/cylinder structures (blocks C formed an inside core winding with helical stripes, whereas blocks A and B formed the outer cylindrical barrels) and then finally to the stacked disk/cylinder structures.
Resumo:
The miscibility and structure of A-B copolymer/C homopolymer blends with special interactions were studied by a Monte Carlo simulation in two dimensions. The interaction between segment A and segment C was repulsive, whereas it was attractive between segment B and segment C. In order to study the effect of copolymer chain structure on the morphology and structure of A-B copolymer/C homopolymer blends, the alternating, random and block A-B copolymers were introduced into the blends, respectively. The simulation results indicated that the miscibility of A-B block copolymer/C homopolymer blends depended on the chain structure of the A-B copolymer. Compared with alternating or random copolymer, the block copolymer, especially the diblock copolymer, could lead to a poor miscibility of A-B copolymer/C homopolymer blends. Moreover, for diblock A-B copolymer/C homopolymer blends, obvious self-organized core-shell structure was observed in the segment B composition region from 20% to 60%. However, if diblock copolymer composition in the blends is less than 40%, obvious self-organized core-shell structure could be formed in the B-segment component region from 10 to 90%. Furthermore, computer statistical analysis for the simulation results showed that the core sizes tended to increase continuously and their distribution became wider with decreasing B-segment component.
Resumo:
Covering the solid lattice with a finite-element mesh produces a coarse-grained system of mesh nodes as pseudoatoms interacting through an effective potential energy that depends implicitly on the thermodynamic state. Use of the pseudoatomic Hamiltonian in a Monte Carlo simulation of the two-dimensional Lennard-Jones crystal yields equilibrium thermomechanical properties (e.g., isotropic stress) in excellent agreement with ``exact'' fully atomistic results.
Resumo:
A simple probabilistic model for predicting crack growth behavior under random loading is presented. In the model, the parameters c and m in the Paris-Erdogan Equation are taken as random variables, and their stochastic characteristic values are obtained through fatigue crack propagation tests on an offshore structural steel under constant amplitude loading. Furthermore, by using the Monte Carlo simulation technique, the fatigue crack propagation life to reach a given crack length is predicted. The tests are conducted to verify the applicability of the theoretical prediction of the fatigue crack propagation.
Resumo:
Thickness and component distributions of large-area thin films are an issue of international concern in the field of material processing. The present work employs experiments and direct simulation Monte Carlo (DSMC) method to investigate three-dimensional low-density, non-equilibrium jets of yttrium and titanium vapor atoms in an electron-beams physical vapor deposition (EBPVD) system furnished with two or three electron-beams, and obtains their deposition thickness and component distributions onto 4-inch and 6-inch mono-crystal silicon wafers. The DSMC results are found in excellent agreement with our measurements, such as evaporation rates of yttrium and titanium measured in-situ by quartz crystal resonators, deposited film thickness distribution measured by Rutherford backscattering spectrometer (RBS) and surface profilometer and deposited film molar ratio distribution measured by RBS and inductively coupled plasma atomic emission spectrometer (ICP-AES). This can be taken as an indication that a combination of DSMC method with elaborate measurements may be satisfactory for predicting and designing accurately the transport process of EBPVD at the atomic level.
Resumo:
Strong mechanical forces can, obviously, disrupt cell-cell and cell-matrix adhesions, e.g., cyclic uniaxial stretch induces instability of cell adhesion, which then causes the reorientation of cells away from the stretching direction. However, recent experiments also demonstrated the existence of force dependent adhesion growth (rather than dissociation). To provide a quantitative explanation for the two seemingly contradictory phenomena, a microscopic model that includes both integrin-integrin interaction and integrin-ligand interaction is developed at molecular level by treating the focal adhesion as an adhesion cluster. The integrin clustering dynamics and integrin-ligand binding dynamics are then simulated within one unified theoretical frame with Monte Carlo simulation. We find that the focal adhesion will grow when the traction force is higher than a relative small threshold value, and the growth is dominated by the reduction of local chemical potential energy by the traction force. In contrast, the focal adhesion will rupture when the traction force exceeds a second threshold value, and the rupture is dominated by the breaking of integrin-ligand bonds. Consistent with the experiments, these results suggest a force map for various responses of cell adhesion to different scales of mechanical force. PMID: 20542514
Resumo:
The present paper employs the direct simulation Monte Carlo (DSMC) method to study the Rayleigh-Benard flows, where the temperature ratio of the upper to lower plate is fixed to 0.1. For a Knudsen number (Kn) of 0.01, as the Rayleigh number (Ra) increases, the flow changes from the thermal conductive state to the convective state at about Ra=1700, and the calculated relation of heat flux through the lower plate versus Ra is in good agreement with classical experimental and theoretical results. For Kn=0.05, the thermal conductive state remains stable, and the increase of Ra cannot trigger thermal instability.
Resumo:
发展了一种新的蒙特卡罗方法用于研究超短激光脉冲进入混浊介质后的光子传播路径。这种方法可以获得任一时刻的光子最可几传播路径,研究了混浊介质的光学参数如何影响光子的最可几传播路径,发现吸收系数不影响光子的最可几传播路径。
Resumo:
We theoretically demonstrate that enhanced penetration depth in three-dimensional multiphoton microscopy can be achieved using concentric two-color two-photon (C2C2P) fluorescence excitation in which the two excitation beams are separated in space before reaching their common focal spot. Monte Carlo simulation shows that, in comparison with the one-color two-photon excitation scheme, the C2C2P fluorescence microscopy provides a significantly greater penetration depth for imaging into a highly scattering medium. (C) 2008 Optical Society of America.
Resumo:
在中性原子的磁囚禁实验中,磁阱线圈的电流噪声会激发磁阱中的原子运动,势必对原子团的温度和寿命产生不可忽视的影响。对于非简谐阱,这种激发具有能量选择特性,它又取决于电流噪声的频谱分布。选择了实验中常用的四极阱为研究对象,用直接模拟蒙特卡罗方法来模拟四极阱中原子运动的参变激发现象,得到了原子温度与原子数损失随激发频率的变化关系,并进一步计算了两个共振峰处原子温度随调制时间和调制深度的变化曲线。此外,还研究了弹性碰撞速率对参变激发过程中原子温度上升的影响。这些结果对四极阱参变激发的实验有较好的参考价值。
Resumo:
用蒙特卡罗方法仿真了增益随机散射体中的非相干辐射,观察了非相干随机激光的特性。当抽运能量超过一定阈值时,散射体的整体辐射谱突然变窄;随着抽运能量继续增大,在光滑谱背景上会出现分离尖峰;散射体内空间某位置处频率组成不是单一的;辐射谱中某单个频率的空间方向分布和位置分布比较广。增益随机散射体中产生的非相干随机激光本质上既不同于无反馈的普通放大自发辐射,又不同于相干反馈形成的常规激光。解释了非相干随机激光辐射谱上出现分离尖峰的原因,出现这种现象是由于少数光子在增益散射体中经历较多次数散射后得到了相对充分的放大。
Resumo:
The characteristics of media in communication channel are analyzed briefly and the reasonable optical parameters of media are adopted. With certain communication system parameters the temporal and spatial distributions of the received signal from submerged platform are simulated using Monte Carlo method. The upper limit of the ratio of Monte Carlo estimated error to averaged value is about 0.3%. From the simulated results, the optimized sampling timing of receiver and field of view of telescope are obtained. Also the signal-to-noise ratio of the receiver is calculated. Based on this, the error probability of the communication system is deduced from laser pulse position modulation and maximum likelihood detection. The results show that under severe environment robust laser communication from a satellite to a submerged platform can be achieved.