112 resultados para Laser scanning confocal microscopy (LSCM)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The origin, character, analysis and treatment of subsurface damage (SSD) were summarized in this paper. SSD, which was introduced to substrates by manufacture processes, may bring about the decrease of laser-induced damage threshold (LIDT) of substrates and thin films. Nondestructive evaluation (NDE) methods for the measurement of SSD were used extensively because of their conveniences and reliabilities. The principle, experimental setup and some other technological details were given for total internal reflection microscopy (TIRM), high-frequency scanning acoustic microscopy (HFSAM) and laser-modulated scattering (LMS). However, the spatial resolution, probing depth and theoretic models of these NDE methods demanded further studies. Furthermore, effective surface treatments for minimizing or eliminating SSD were also presented in this paper. Both advantages and disadvantages of ion beam etching (IBE) and magnetorheological finishing (MRF) were discussed. Finally, the key problems and research directions of SSD were summarized. (c) 2005 Elsevier GmbH. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Zirconium dioxide (ZrO2) thin films were deposited on BK7 glass substrates by the electron beam evaporation method. A continuous wave CO2 laser was used to anneal the ZrO2 thin films to investigate whether beneficial changes could be produced. After annealing at different laser scanning speeds by CO2 laser, weak absorption of the coatings was measured by the surface thermal lensing (STL) technique, and then laser-induced damage threshold (LIDT) was also determined. It was found that the weak absorption decreased first, while the laser scanning speed is below some value, then increased. The LIDT of the ZrO2 coatings decreased greatly when the laser scanning speeds were below some value. A Nomarski microscope was employed to map the damage morphology, and it was found that the damage behavior was defect-initiated both for annealed and as-deposited samples. The influences of post-deposition CO2 laser annealing on the structural and mechanical properties of the films have also been investigated by X-ray diffraction and ZYGO interferometer. It was found that the microstructure of the ZrO2 films did not change. The residual stress in ZrO2 films showed a tendency from tensile to compressive after CO, laser annealing, and the variation quantity of the residual stress increased with decreasing laser scanning speed. The residual stress may be mitigated to some extent at proper treatment parameters. (c) 2007 Elsevier GmbH. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A two-hot-boat chemical vapor deposition system was modified from a thermal evaporation equipment. This system has the advantage of high vacuum, rapid heating rate and temperature separately controlled boats for the source and samples. These are in favor of synthesizing compound semiconducting nano-materials. By the system, we have synthesized high-quality wurtzite single crystal GaN nanowires and nanotip triangle pyramids via an in-situ doping indium surfactant technique on Si and 3C-SiC epilayer/Si substrates. The products were analyzed by x-ray diffraction, field emission scanning electron microscopy, highresolution transmission electron microscopy, energy- dispersive x-ray spectroscopy, and photoluminescence measurements. The GaN nanotip triangle pyramids, synthesized with this novel method, have potential application in electronic/ photonic devices for field-emission and laser.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The novel Si stripixel detector, developed at BNL (Brookhaven National Laboratory), has been applied in the development of a prototype Si strip detector system for the PHENIX Upgrade at RHIC. The Si stripixel detector can generate X-Y two-dimensional (2D) position sensitivity with single-sided processing and readout. Test stripixel detectors with pitches of 85 and 560 mu m have been subjected to the electron beam test in a SEM set-up, and to the laser beam test in a lab test fixture with an X-Y-Z table for laser scanning. Test results have shown that the X and Y strips are well isolated from each other, and 2D position sensitivity has been well demonstrated in the novel stripixel detectors. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gallium nitride (GaN) nanorods were synthesized by nitriding Ga2O3/ZnO films which were deposited in turn on Si (111) substrates using radio frequency (RF) magnetron sputtering system. In the nitridation process, ZnO was reduced to Zn and Zn sublimated at 950 degrees C. Ga2O3 was reduced to Ga2O and Ga2O reacted with NH3 to synthesize GaN nanorods with the assistance of the sublimation of Zn. The morphology and structure of the nanorods were studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and selected-area electron diffraction (SAED). The composition of GaN nanorods was studied by Fourier-transform infrared spectrophotometer (FTIR). The synthesized nanorods is hexagonal wurtzite structured. Nitridation time of the samples has an evident influence on the morphology of GaN nanorods synthesized by this method. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel technique of manufacturing Al0.3Ga0.7As pyramids by liquid phase epitaxy (LPE) for scanning probe microscopy (SPM) sensors is reported Four meticulously designed conditions-partial oxidation, deficient solute, air quenching and germanium doping result in defect-free homogeneous nucleation and subsequent pyramid formation. Micrometer-sized frustums and pyramids are detected by scanning electron microscopy (SEM). The sharp end of the microtip has a radius of curvature smaller than 50 nm. It is believed that such accomplishments would contribute not only to crystal growth theory, but also to miniature fabrication technology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A portable 3D laser scanning system has been designed and built for robot vision. By tilting the charge coupled device (CCD) plane of portable 3D scanning system according to the Scheimpflug condition, the depth-of-view is successfully extended from less than 40 to 100 mm. Based on the tilted camera model, the traditional two-step camera calibration method is modified by introducing the angle factor. Meanwhile, a novel segmental calibration approach, i.e., dividing the whole work range into two parts and calibrating, respectively, with corresponding system parameters, is proposed to effectively improve the measurement accuracy of the large depth-of-view 3D laser scanner. In the process of 3D reconstruction, different calibration parameters are used to transform the 2D coordinates into 3D coordinates according to the different positions of the image in the CCD plane, and the measurement accuracy of 60 mu m is obtained experimentally. Finally, the experiment of scanning a lamina by the large depth-of-view portable 3D laser scanner used by an industrial robot IRB 4400 is also employed to demonstrate the effectiveness and high measurement accuracy of our scanning system. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel inorganic-organic hybrid hydrophobic anti-reflection silica film used for laser crystal was obtained by sol-gel process. The film consisted of silica sols mixed with a small amount of polymethyl methacrylate (PMMA) or polystyrene (PS). The optical transparency, hydrophobic property and surface morphology of the film were characterized by UV-VIS-NIR spectrophotometer; contact angle instrument and Scanning Electron Microscopy (SEM), respectively. The results showed that the anti-reflection coating had good hydrophobility and optical transparency from 400 nm to 1200 nm. The contact angle reached to 130-140 degrees. SEM images indicated the hydrophobic films modified with PMMA or PS had compact structure compared to the pure silica sol film. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polymorphous Si nanowires (SiNWS) have been successfully synthesized on Si wafer by plasma enhanced chemical vapor deposition (PECVD) at 440degreesC,using silane as the Si source and Au as the catalyst. To grow the polymorphous SiNWS preannealing the Si substrate with Au film at 1100 degreesC is needed. The diameters of Si nanowires range from 15 to 100 urn. The structure morphology and chemical composition of the SiNWS have been characterized by high resolution x-ray diffraction, scanning electron microscopy, transmission electron microscopy, as well as energy dispersive x-ray spectroscopy. A few interesting nanowires with Au nanoclusters uniformly distributed in the body of the wire were also produced by this technique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Swelling behaviour is one of the important properties for microcapsules made by hydrogels, which always affects the diffusion and release of drugs when the microcapsules are applied in drug delivery systems. In this paper, alginate-chitosan microcapsules were prepared by different technologies called external or internal gelation process respectively. With the volume swelling degree (S-w) as an index, the effect of properties of chitosan on the swelling behaviour of both microcapsules was investigated. It was demonstrated that the microcapsules with low molecular weight and high concentration of chitosan gave rise to low S-w. Considering the need of maintaining drug activity and drug loading, neutral pH and short gelation time were favorable. It was also noticed that S-w of internal gelation microcapsules was lower than that of external gelation microcapsules, which was interpreted by the structure analysis of internal or external gelation Ca-alginate beads with the aid of confocal laser scanning microscope. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel form of ball-like carbon material with its size in micrometer range was prepared from coal with nickel as catalyst by arc plasma method. The carbon material has been systematically studied by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and ultraviolet laser Raman spectroscopy. The SEM observation shows that the novel carbon material exists in various forms such as individual balls, net-like and plate-like forms, all of which have a quite smooth surface. The diameters of these carbon spheres are quite uniform and in a narrow range of 10-20 mum. The EDS analysis reveals that the ball-like carbon material contains more than 99.5% of carbon and a little amount of other elements such as nickel, silicon and aluminum, The XRD and UV-Raman results reveal that the novel carbon material is a kind of highly graphitized carbon. The growth mechanism of the ball-like carbon material was proposed and discussed in terms of arc plasma parameters and the chemical structure of coal-based carbon. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ca-alginate beads were prepared with either external or internal calcium sources. The structures of both beads were investigated with the aid of scanning electron microscopy (SEM) and confocal microscopy. It was shown that the beads with internal calcium source had a looser structure and bigger pore size than those with external calcium source. The attempts to interpret the difference were carried out by determining the Ca content within the beads at various times, which indicated that it was the different gelation mechanisms that caused the difference of structures of both beads. Furthermore, it was also found that the diffusion rate of haemoglobin (Hb) within the beads with an internal calcium source was faster than that of the beads with an external one, which was consistent with the observation of their structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SrLa1-xRExGa3O7 (RE = EU3+, Tb3+) phosphor films were deposited on quartz glass substrates by a simple Pechim sol-gel method. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), atomic force microscopy, field-emission scanning electron microscopy, photoluminescence spectra, and lifetimes were used to characterize the resulting films. The results of XRD indicated that the films began to crystallize at 700 degrees C and crystallized fully at 900 degrees C. The results of FNR spectra were in agreement with those of XRD. Uniform and crack-free films annealed at 900 degrees C were obtained with average grain size of 80 nm, root mean square roughness of 46 nm and thickness of 130 nm The RE ions showed their characteristic emission in crystalline SrLa1-xRExGa3O7 films, i.e., Eu3+ D-0-F-7(J) (J = 0, 1, 2, 3, 4), Tb3+5D4 -(7) F-J (J = 6, 5, 4, 3) emissions, respectively. The optimum concentrations (x) of Eu3+ and Tb3+ were determined to be 50, and 80 mol% in SrLa(1-x)RE(x)GGa(3)O(7) films, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly (aniline-co-anthranilic acid) (PANANA) nanorods in bundles was prepared successfully in an alcohol/aqueous media without assistance of an), other kinds of acids. Anthranilic acid played all roles of monomer, acid-media provider, and dopant in the reaction system, and ammonium persulfate (APS) served as the oxidant. The morphologies of PANANA nanorods in bundles were investigated by scanning electron microscopy (SEM). Influences of the monomer molar ratio on the resulting morphology were investigated. Moreover the formation mechanism of the nanostructured copolymer was proposed. FT-IR. UV-vis and X-ray diffraction (XRD) measurements were used to confirm the molecular and electrical structure of the self-doped PANANA. The intrinsic properties, such as conductivity, electrochemical redox activity and room-temperature solubility of the resulting copolymer were explored.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Scanning probe microscopy (SPM), including scanning tunneling microscopy (STM) and atomic force microscopy (AFM), has become a powerful tool in building nanoscale structures required by modern industry. In this article, the use of SPM for the manipulation of atoms and molecules for patterning nanostructures for opt-electronic and biomedical applications is reviewed. The principles and procedures of manipulation using STM and AFM-based technologies are presented with an emphasis on their ability to create a wide variety of nanostructures for different applications. The interaction among the atoms/molecules, surface, and tip are discussed. The approaches for positioning the atom/molecule from and to the desired locations and for precisely controlling its movement are elaborated for each specific manipulation technique. As an AFM-based technique, the dip-pen nanolithography is also included. Finally, concluding remarks on technological improvement and future research is provided.