122 resultados para Folate Interaction
Resumo:
The two-dimensional problems concerning the interaction of linear water waves with cylinders of arbitrary shape in two-layer deep water are investigated by use of the Boundary Integral Equation method (BIEM). Simpler new expressions for the Green functions are derived, and verified by comparison of results obtained by BIEM with these by an analytical method. Examined are the radiation and scattering of linear waves by two typical configurations of cylinders in two-layer deep water. Hydrodynamic behaviors including hydrodynamic coefficients, wave forces, reflection and transmission coefficients and energies are analyzed in detail, and some interesting physical phenomena are observed.
Resumo:
It is found that when a light beam travels through a slab of optically denser dielectric medium in air, the lateral shift of the transmitted beam can be negative. This is a novel phenomenon that is reversed in comparison with the geometrical optic prediction according to Snell's law of refraction. A Gaussian-shaped beam is analyzed in the paraxial approximation, and a comparison with numerical simulations is made. Finally, an explanation for the negativity of the lateral shift is suggested, in terms of the interaction of boundary effects of the slab's two interfaces with air.
Resumo:
The interaction of Co with Si and SiO2 during rapid thermal annealing has been investigated. Phase sequence, layer morphology, and reaction kinetics were studied by sheet resistance, x-ray diffraction, Auger electron spectroscopy, x-ray photoelectron spectroscopy, and scanning electron microscopy. With increasing annealing temperature, Co film on Si(100) is transformed sequentially into Co2Si, CoSi, and finally CoSi2 which corresponds to the minimum of sheet resistance. No evidence of silicide formation was observed for Co/SiO2 annealed even at the high temperature of 1050-degrees-C.
Resumo:
The chemical adsorption of sodium sulphide, ferrocene, hydroquinone and p-methyl-nitrobenzene onto the surface of a GaAs/AlxGa1-xAs multiquantum well semiconductor was characterized by steady state and time-resolved photoluminescence (PL) spectroscopy. The changes in the PL response, including the red shift of the emission peak of the exciton in the quantum well and the enhancement of the PL intensity, are discussed in terms of the interactions of the adsorbed molecules with surface states.
Resumo:
The rising time of the excitonic luminescence in GaAs/AlGaAs quantum wells is studied as a function of the well width. For well thickness below approximately 20 Angstrom, we find an increase of rising time with decreasing well width. We explain the dependence of the rising time on well width in very thin quantum wells by the slow-down energy relaxation and/or exciton migration processes due to the decrease of the scattering rate of the exciton-acoustic-phonon interaction. (C) 1996 American Institute of Physics.
Resumo:
Nonlinear wave equation for a one-dimensional anharmonic crystal lattice in terms of its microscopic parameters is obtained by means of a continuum approximation. Using a small time scale transformation, the nonlinear wave equation is reduced to a combined KdV equation and its single soliton solution yields the supersonic kink form of nonlinear elastic waves for the system.