158 resultados para Electron density


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electron acceleration from the interaction of an intense short-pulse laser with low density plasma is considered. The relation between direct electron acceleration within the laser pulse and that in the wake is investigated analytically. The magnitude and location of the ponderomotive-force-caused charge separation field with respect to that of the pulse determine the relative effectiveness of the two acceleration mechanisms. It is shown that there is an optimum condition for acceleration in the wake. Electron acceleration within the pulse dominates as the pulse becomes sufficiently short, and the latter directly drives and even traps the electrons. The latter can reach ultrahigh energies and can be extracted by impinging the pulse on a solid target. (C) 2003 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interaction of a petawatt laser with a small solid-density plasma bunch is studied by particle-in-cell simulation. It is shown that when irradiated by a laser of intensity >10(21) W/cm(2), a dense plasma bunch of micrometer size can be efficiently accelerated. The kinetic energy of the ions in the high-density region of the plasma bunch can exceed ten MeV at a density in the 10(23)-cm(-3) level. Having a flux density orders of magnitude higher than that of the traditional charged-particle pulses, the laser-accelerated plasma bunch can have a wide range of applications. In particular, such a dense energetic plasma bunch impinging on the compressed fuel in inertial fusion can significantly enhance the nuclear-reaction cross section and is thus a promising alternative for fast ignition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A scheme for electron self-injection in the laser wakefield acceleration is proposed. In this scheme, the transverse wave breaking of the wakefield and the tightly focused geometry of the laser beam play important roles. A large number of the background electrons are self-injected into the acceleration phase of the wakefield during the defocusing of the tightly focused laser beam as it propagates through an underdense plasma. Particle-in-cell simulations performed using a 2D3V code have shown generation of a collimated electron bunch with a total number of 1.4 x 109 and energies up to 8 MeV. (C) 2005 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In underdense plasmas, the transverse ponderomotive force of an intense laser beam with Gaussian transverse profile expels electrons radially, and it can lead to an electron cavitation. An improved cavitation model with charge conservation constraint is applied to the determination of the width of the electron cavity. The envelope equation for laser spot size derived by using source-dependent expansion method is extended to including the electron cavity. The condition for self-guiding is given and illuminated by an effective potential for the laser spot size. The effects of the laser power, plasma density and energy dissipation on the self-guiding condition are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ZrO2, films were deposited by electron-beam evaporation with the oxygen partial pressure varying from 3 X 10(-3) Pa to I I X 10(-3) Pa. The phase structure of the samples was characterized by x-ray diffraction (XRD). The thermal absorption of the films was measured by the surface thermal lensing technique. A spectrophotometer was employed to measure the refractive indices of the samples. The laser-induced damage threshold (LIDT) was assessed using a 1064, nm Nd: yttritium-aluminium-garnet pulsed laser at pulse width of 12 ns. The influence of oxygen partial pressure on the microstructure and LIDT of ZrO2 films was investigated. XRD data revealed that the films changed from polycrystalline to amorphous as the oxygen partial pressure increased. The variation of refractive index at 550 nm wavelength indicated that the packing density of the films decreased gradually with increasing oxygen partial pressure. The absorptance of the samples decreased monotonically from 125.2 to 84.5 ppm with increasing oxygen partial pressure. The damage threshold, values increased from 18.5 to 26.7 J/cm(2) for oxygen partial pressures varying from 3 X 10(-3) Pa to 9 X 10(-3) Pa, but decreased to 17.3 J/cm(2) in the case of I I X 10(-3) Pa. (C) 2005 American Vacuum Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ZrO2, films were deposited by electron-beam evaporation with the oxygen partial pressure varying from 3 X 10(-3) Pa to I I X 10(-3) Pa. The phase structure of the samples was characterized by x-ray diffraction (XRD). The thermal absorption of the films was measured by the surface thermal lensing technique. A spectrophotometer was employed to measure the refractive indices of the samples. The laser-induced damage threshold (LIDT) was assessed using a 1064, nm Nd: yttritium-aluminium-garnet pulsed laser at pulse width of 12 ns. The influence of oxygen partial pressure on the microstructure and LIDT of ZrO2 films was investigated. XRD data revealed that the films changed from polycrystalline to amorphous as the oxygen partial pressure increased. The variation of refractive index at 550 nm wavelength indicated that the packing density of the films decreased gradually with increasing oxygen partial pressure. The absorptance of the samples decreased monotonically from 125.2 to 84.5 ppm with increasing oxygen partial pressure. The damage threshold, values increased from 18.5 to 26.7 J/cm(2) for oxygen partial pressures varying from 3 X 10(-3) Pa to 9 X 10(-3) Pa, but decreased to 17.3 J/cm(2) in the case of I I X 10(-3) Pa. (C) 2005 American Vacuum Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

TiO2 and ZrO2 films are deposited by electron-beam (EB) evaporation and by sol-gel process. The film properties are characterized by visible and Fourier-transform infrared spectrometry, x-ray diffraction analysis, surface roughness measure, absorption and laser-induced damage threshold (LIDT) test. It is found that the sol-gel Elms have lower refractive index, packing density and roughness than EB deposited films due to their amorphous structure and high OH group concentration in the film. The high LIDT of sol-gel films is mainly due to their amorphous and porous structure, and low absorption. LIDT of EB deposited film is considerably affected by defects in the Elm, and LIDT of sol-gel deposited film is mainly effected by residual organic impurities and solvent trapped in the film.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

TiO2 films are deposited by electron beam evaporation as a function of oxygen partial pressure. The packing density, refractive index, and extinction coefficient all decrease with the increase of pressure, which also induces the change of the film's microstructure, such as the increase of voids and H2O concentration in the film. The laser-induced damage threshold (LIDT) of the film increases monotonically with the rise of pressure in this experiment. The porous structure and low nonstoichiometric defects absorption contribute to the film's high LIDT. The films prepared at the lowest and the highest pressure show nonstoichiometric and surface-defects-induced damage features, respectively.(C) 2007 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The well known 'crystal seed' theory is first applied in this work to prepare TiO2 film: a high refractive index rutile TiO2 film is grown by electron beam evaporation on the rutile seed formed by 1100 degrees C annealing. The average n is larger than 2.4, by far the highest in all the authors' TiO2 films. The films are characterised by optical properties, microstructure and surface morphologies. It is found that the refractive index shows positive relation with the crystal structure, grain size, and packing density and roughness of the film. The film has lower density of granularity and nodule defects on the surface than those of the film deposited by magnetron sputtering. The result shows attractive application in complex filter and laser coatings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The properties of Rashba wave function in the planar one-dimensional waveguide are studied, and the following results are obtained. Due to the Rashba effect, the plane waves of electron with the energy E divide into two kinds of waves with the wave vectors k(1)=k(0)+k(delta) and k(2)=k(0)-k(delta), where k(delta) is proportional to the Rashba coefficient, and their spin orientations are +pi/2 (spin up) and -pi/2 (spin down) with respect to the circuit, respectively. If there is gate or ferromagnetic contact in the circuit, the Rashba wave function becomes standing wave form exp(+/- ik(delta)l)sin[k(0)(l-L)], where L is the position coordinate of the gate or contact. Unlike the electron without considering the spin, the phase of the Rashba plane or standing wave function depends on the direction angle theta of the circuit. The travel velocity of the Rashba waves with the wave vector k(1) or k(2) are the same hk(0)/m*. The boundary conditions of the Rashba wave functions at the intersection of circuits are given from the continuity of wave functions and the conservation of current density. Using the boundary conditions of Rashba wave functions we study the transmission and reflection probabilities of Rashba electron moving in several structures, and find the interference effects of the two Rashba waves with different wave vectors caused by ferromagnetic contact or the gate. Lastly we derive the general theory of multiple branches structure. The theory can be used to design various spin polarized devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The properties of electron states in the presence of microwave irradiation play a key role in understanding the oscillations of longitudinal resistance and the zero-resistance states in a high-mobility two-dimensional electron gas(2DEG) in low magnetic field. The properties of electron states in a high-mobility and low-density GaAs/Al0.35Ga0.65As 2DEG in the presence of Ka-band microwave irradiation were studied by reflectance-based optically detected cyclotron resonance(RODCR). The influences of the direction of microwave alternating electronic field, wavelength of the laser, and temperature on RODCR results were discussed. The results show that RODCR measurements provide a convenient and powerful method for studying electron states in 2DEG.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The alternate combinational approach of genetic algorithm and neural network (AGANN) has been presented to correct the systematic error of the density functional theory (DFT) calculation. It treats the DFT as a black box and models the error through external statistical information. As a demonstration, the AGANN method has been applied in the correction of the lattice energies from the DFT calculation for 72 metal halides and hydrides. Through the AGANN correction, the mean absolute value of the relative errors of the calculated lattice energies to the experimental values decreases from 4.93% to 1.20% in the testing set. For comparison, the neural network approach reduces the mean value to 2.56%. And for the common combinational approach of genetic algorithm and neural network, the value drops to 2.15%. The multiple linear regression method almost has no correction effect here.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hexagonal nanopillars with a single InGaAs/GaAs quantum well (QW) were fabricated on a GaAs (111) B substrate by selective-area metal-organic vapor phase epitaxy. The standard deviations in diameter and height of the nanopillars are about 2% and 5%, respectively. Zincblende structure and rotation twins were identified in both the GaAs and the InGaAs layers by electron diffraction. The excitation-power-density-dependent micro-photoluminescence (mu-PL) of the nanopillars was measured at 4.2, 50, 100 and 150 K. It was shown that, with increasing excitation power density, the mu-PL peak's positions shift to a higher energy, and their intensity and width increase, which were rationalized using a model that includes the effects of piezoelectricity, photon-screening and band-filling. It was also revealed that the rotation twins significantly reduce the diffusion length of the carriers in the nanopillars, compared to that in the regular semiconductors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magnetotransport properties of two-dimensional electron gas have been investigated for three In0.53Ga0.47As/In0.52Al0.48As quantum well samples having two occupied subbands with different well widths. When the intersubband scattering is considered, we have obtained the subband density, transport scattering time, quantum scattering time and intersubband scattering time, respectively, by analyzing the result of fast Fourier transform of the first derivative of Shubnikov-de Haas oscillations. It is found that the main scattering mechanism is due to small-angle scattering, such as ionized impurity scattering, for the first subband electrons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the transmission probability of a single electron transmission through a quantum ring device based on the single-band effective mass approximation method and transfer matrix theory. The time-dependent Schrodinger equation is applied on a Gaussian wave packet passing through the quantum ring system. The electron tunneling resonance peaks split when the electron transmits through a double quantum ring. The splitting energy increases as the distance between the two quantum rings decreases. We studied the tunneling time through the single electron transmission quantum ring from the temporal evolution of the Gaussian wave packet. The electron probability density is sensitive to the thickness of the barrier between the two quantum rings. (C) 2008 American Institute of Physics.