320 resultados para Doping concentration
Resumo:
A new thermoplastic-photoconductor laser holographic recording system has been used for real-time and in situ observation of alpha-LiIO3 crystal growth. The influence of crystallization-driven convection on the concentration stratification in solution has been studied under gravity field. It is found that the stratification is closely related to the seed orientation of alpha-LiIO3 crystal. When the optical axis of crystal seed C is parallel to the gravity vector g, the velocity of the concentration stratification is two times larger than that in the case of C perpendicular-to g. It needs 40 h for the crystalline system of alpha-LiIO3 to reach stable concentration distribution (expressed as tau) at 47.6-degrees-C. The time tau is not sensitive to the seed orientation. Our results provide valuable data for designing the crystal growth experiments ia space.
Resumo:
The maximum stress concentration factor in brittle materials with a high concentration of cavities is obtained. The interaction between the nearest cavities, in addition to the far field interactions, is taken into account to evaluate the strength distribution based on the statistical analysis of the nearest distance distribution. Through this investigation, it is found that the interaction between the nearest neighbors is much more important than the far field interactions, and one has to consider it in calculating the strength of brittle materials even if the volume fraction of cavities it contains is small. The other important conclusion is that the maximum stress concentration factor has a wide scattered distribution.
Resumo:
The results of experiments in open channels and closed pipelines show two kinds of patterns for the vertical distribution of particle concentration (i.e., pattern I and pattern II). The former shows a pattern of maximum concentration at some location above the bottom and the downward decay of the concentration below the location. The latter always shows an increase of the particle concentration downward over the whole vertical, with the maximum value at the bottom. Many investigations were made on the pattern II, but few were made on pattern I. In this paper, a particle velocity distribution function is first obtained in the equilibrium state or in dilute steady state for the particle in two-phase flows, then a theoretical model for the particle concentration distribution is derived from the kinetic theory. More attention is paid to the predictions of the concentration distribution of pattern I and comparisons of the present model are made with the data measured by means of laser doppler anemometry (LDA). Very good agreements are obtained between the measured and calculated results.
Resumo:
The results presented are obtained from sound velocity measurements, uniaxial compression tests, Brazilian tests and three-point bending tests. The density of microcracks in the heated rock is studied by means of optical microscopy, SEM and differential strain analysis (DSA).
Resumo:
The problem of the concentration jump of a vapour in the vicinity of a plane wall, which consists of the condensed phase of the vapour, in a rarefied gas mixture of that vapour (A) and another 'inert' gas (B), is considered. The general formulation of the problem of determining the concentration-jump coefficient for dA is given. In the Knudsen layer the simplest model of Boley-Yip theory is used to simplify the Boltzmann equations for the binary gas mixture. The numerical calculation of the concentration jump coefficient for dA for various values of evaporation coefficient of A is illustrated for the case of the equilibrium concentration of B being much greater than that of A, for which experimental data are available.
Resumo:
The physical vapor transport (PVT) method is being widely used to grow large-size single SiC crystals. The growth process is associated with heat and mass transport in the growth chamber, chemical reactions among multiple species as well as phase change at the crystal/gas interface. The current paper aims at studying and verifying the transport mechanism and growth kinetics model by demonstrating the flow field and species concentration distribution in the growth system. We have developed a coupled model, which takes into account the mass transport and growth kinetics. Numerical simulation is carried out by employing an in-house developed software based on finite volume method. The results calculated are in good agreement with the experimental observation.
Resumo:
The lift force on a spherical nanoparticle near a wall in micro/nanofluidics has not received
sufficient attention so far. In this letter the concentration of 200 nm particles is measured at
0.25–2.0 m to a wall in a microchannel with pressure-driven de-ionized water flow pressure
gradient 0–2000 kPa/m . The measured data show the influence of the lift force on the nanoparticle
concentration distribution. By introducing the Saffman lift force into the Nernst–Planck equation
near a wall, we find that the lift force is dominant at the range of 2
Resumo:
测量了不同掺杂浓度下Er^3+离子在碲酸盐玻璃中的吸收光谱、发射光谱和Er^3+离子的荧光寿命,计算了Er^3+离子的发射截面σc,分析了Er^3+离子掺杂浓度对其发光强度和荧光寿命的影响.结果表明,Er^3+离子掺杂浓度较低时,对其荧光强度和荧光寿命没有显著的影响;掺杂浓度高时,出现了浓度猝灭效应,使Er^3+离子荧光光强度降低,荧光寿命下降.实验确定了掺杂浓度最优值,同时对浓度猝灭机制进行了分析.
Resumo:
Fluorophosphate glass with 4 mol.% ErF3 content was prepared. The different scanning calorimetry was conducted. Raman spectrum, infrared transmission spectrum, absorption spectrum were measured. Fluorescence spectrum and lifetime of emission around 1.53 mu m were measured under 970 nm laser diode excitation. The metaphosphate content in the composition is limited, but the maximum phonon energy of glass amounts to 1290 cm- 1, and is comparatively high. The full width at half maximum is about 56 nm, and is wider than for most of the materials investigated. The measured lifetime of I-4(13/2) -> I-4(15/2) transition, contributed by the high phonon energy, inefficient interaction of Er3+ ions, and low water content, amounts to no less than 7.36 ms though the Er3+ concentration is high. This work might provide useful information for the development of compact optical devices.
Resumo:
Er3+/Yb3+-codoped bismuthate glasses for developing potential upconversion lasers have been fabricated and characterized. The optimal Yb3+ doping content was investigated in the glasses with different Yb3+-Er3+ concentration ratios and the optimal Yb3+-Er3+ concentration ratio is 5:1. Under 975 nm excitation, intense green and red emissions centered at 525, 546 and 657 nm, corresponding to the transitions H-2(11/2) -> I-4(15/2), S-4(3/2) -> I-4(15/2) and F-4(9/2) -> I-4(15/2), respectively, were observed at room temperature. The quadratic dependence of the 525, 546 and 657 nm emissions on excitation power indicates that a two-photon absorption process occurs under 975 nm excitation. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Er2O3-doped TeO2-ZnO-La2O3 modified tellurite glasses were prepared by the conventional melt-quenching method, and the Er3+ : I-4(13/2) -> I-4(15/2) fluorescence properties have been studied for different Er3+ concentrations. Infrared spectra were measured in order to estimate the exact content of OH- groups in samples. Based on the electric dipole-dipole interaction theory, the interaction parameter, C-Er,(Er), for the migration rate of Er3+ : I-4(13/2) -> I-4(13/2) in modified tellurite glass was calculated. Finally, the concentration quenching mechanism using a model based on energy transfer and quenching by hydroxyl (OH-) groups was presented. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
This is about the first reported laser glass with very low no, high Er3+ concentration and no quenching. In this work, a series of high Er3+ concentration (10.6-12.2 x 10(20) ions/cm(3)), low refractive index (n(1550) < 1.47) and relatively high fluorescence lifetime (6.8-12.6 ms) fluorophosphate glasses were made. A cw-pumping evanescent wave optical amplifier experiment was performed with it, and a relative gain of around 2dB at 1550 nm wavelength was achieved while the noise level was almost unchanged. To our knowledge, this is the first successful relative gain in evanescent wave optical amplifiers (EWOA) demonstrated with cw pumping. It is a valuable study of specially designed fluorophosphate glass suitable for EWOA communication experiment. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we present results on upconversion luminescence performed on Yb3+-doped yttrium aluminum garnets under 940 nm excitation. The upconversion luminescence was ascribed to Yb3+ cooperative luminescence and the presence of rare earth impurity ions. The cooperative luminescence spectra as a function of Yb concentration were measured and the emission intensity variation with Yb concentration was discussed. Yb3+ energy migration quenched the cooperative luminescence of Yb:YAG crystals with doping level over 15 at%. (c) 2004 Elsevier B.V. All rights reserved.