113 resultados para BENZYL PHENYL SULFIDE
Resumo:
A tri-phasic catalytic system consisting of aqueous hydrogen peroxide, benzyl alcohol and a solid catalyst such as tungsten trioxide has been proved effective for the oxidation of benzyl alcohol in the presence of cetyl trimethyl aniline bromide (CTMAB). At first, the oxide reacts with CTMAB to form a complex, which can be oxidized by aqueous hydrogen peroxide to form a peroxide which effectively oxidizes benzyl alcohol.
Resumo:
(Li.3DME)[eta(5)-C5H5)3NdC6H5], 1 was synthesized by the reaction of NdCl3.2LiCl, 2 equivalents of cyclopentadienylsodium and one equivalent of phenyllithium in THF at -78-degrees-C, and crystallized from THF and DME. The crystal structure of 1 was determined by X-ray diffraction method at -80-degrees-C. The crystal of 1 is triclinic, space group P1BAR with a = 15.752(6), b = 16.232(3), c = 23.038(7) angstrom, alpha = 108.81(2), beta = 93.31(3), gamma = 108.38(2)-degrees, Z = 6 and D = 1.33 g/cm3. Least-squares refinement (5732 observed reflections) led to a final R of 0.053. The complex consists of disconnected ion pairs of (Li.3DME)+ and [(eta(5)-C5H5)3NdC6H5]-. The neodymium atom was connected to three eta(5)-bonded cyclopentadienyls and one sigma-bonded phenyl in a distorted tetrahedral arrangement with Nd-C(sigma-) 2.593(17), 2.613(13) and 2.601(13) angstrom.
Resumo:
The conformation of phenyl rings in the side groups of the helical chain polymer poly(tripenyl-methyl methacrylate) (1) in solution was studied by spectroscopic methods. According to the Raman spectrum the phenyl rings of 1 and triphenylmethyl methacrylate in solution have the same depolarization ratio at 1002 cm-1. The electronic spectra (ultraviolet and fluorescence) of 1 are similar to those of model substances, except for the "red shift" of the spectra of about 5 nm. It was concluded that the phenyl rings can rotate around the phenyl-C bond.
Resumo:
Sulfide: quinone oxidoreductase (SQR) is a flavoprotein with homologues in all domains of life except plants. It plays a physiological role both in sulfide detoxification and in energy transduction. We isolated the protein from native membranes of the hyperthermophilic bacterium Aquifex aeolicus, and we determined its X-ray structure in the "as-purified,'' substrate-bound, and inhibitor-bound forms at resolutions of 2.3, 2.0, and 2.9 angstrom, respectively. The structure is composed of 2 Rossmann domains and 1 attachment domain, with an overall monomeric architecture typical of disulfide oxidoreductase flavoproteins. A. aeolicus SQR is a surprisingly trimeric, periplasmic integral monotopic membrane protein that inserts about 12 angstrom into the lipidic bilayer through an amphipathic helix-turn-helix tripodal motif. The quinone is located in a channel that extends from the si side of the FAD to the membrane. The quinone ring is sandwiched between the conserved amino acids Phe-385 and Ile-346, and it is possibly protonated upon reduction via Glu-318 and/or neighboring water molecules. Sulfide polymerization occurs on the re side of FAD, where the invariant Cys-156 and Cys-347 appear to be covalently bound to polysulfur fragments. The structure suggests that FAD is covalently linked to the polypeptide in an unusual way, via a disulfide bridge between the 8-methyl group and Cys-124. The applicability of this disulfide bridge for transferring electrons from sulfide to FAD, 2 mechanisms for sulfide polymerization and channeling of the substrate, S2-, and of the product, S-n, in and out of the active site are discussed.
Resumo:
Monotopic membrane proteins are membrane proteins that interact with only one leaflet of the lipid bilayer and do not possess transmembrane spanning segments. They are endowed with important physiological functions but until now only few of them have been studied. Here we present a detailed biochemical, enzymatic and crystallographic characterization of the monotopic membrane protein sulfide:quinone oxidoreductase. Sulfide:quinone oxidoreductase is a ubiquitous enzyme involved in sulfide detoxification, in sulfide-dependent respiration and photosynthesis, and in heavy metal tolerance. It may also play a crucial role in mammals, including humans, because sulfide acts as a neurotransmitter in these organisms. We isolated and purified sulfide:quinone oxidoreductase from the native membranes of the hyperthermophilic bacterium Aquifex aeolicus. We studied the pure and solubilized enzyme by denaturing and non-denaturing polyacrylamide electrophoresis, size-exclusion chromatography, cross-linking, analytical ultracentrifugation, visible and ultraviolet spectroscopy, mass spectrometry and electron microscopy. Additionally, we report the characterization of its enzymatic activity before and after crystallization. Finally, we discuss the crystallization of sulfide:quinone oxidoreductase in respect to its membrane topology and we propose a classification of monotopic membrane protein crystal lattices. Our data support and complement an earlier description of the three-dimensional structure of A. aeolicus sulfide:quinone oxidoreductase (M. Marcia, U. Ermler, G. Peng, H. Michel, Proc Natl Acad Sci USA, 106 (2009) 9625-9630) and may serve as a reference for further studies on monotopic membrane proteins. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This is a report of the study of the authigenic sulfide minerals and their sulfur isotopes in a sediment core (NH-1) collected on the northern continental slope of the South China Sea, where other geophysical and geochemical evidence seems to suggest gas hydrate formation in the sediments. The study has led to the findings: (1) the pyrite content in sediments was relatively high and its grain size relatively large compared with that in normal pelagic or hemipelagic sediments; (2) the shallowest depth of the acid volatile sulfide (AVS) content maximum was at 437.5 cm (> 2 mu mol/g), which was deeper than that of the authigenic pyrite content maximum (at 141.5-380.5 cm); (3) delta S-34 of authigenic pyrite was positive (maximum: +15 parts per thousand) at depth interval of 250-380 cm; (4) the positive delta S-34 coincided with pyrite enrichment. Compared with the results obtained from the Black Sea sediments by Jorgensen and coworkers, these observations indicated that at the NH-1 site, the depth of the sulfate-methane interface (SMI) would be or once was at about 437.5-547.5 cm and the relatively shallow SMI depth suggested high upward methane fluxes. This was in good agreement with the results obtained from pore water sulfate gradients and core head-space methane concentrations in sediment cores collected in the area. All available evidence suggested that methane gas hydrate formation may exist or may have existed in the underlying sediments.
Resumo:
In the title compound, C-18(14)3(3)H(FN)O, the dihedral angles made by the triazole ring with the plane of the central benzene ring and the p-fluorophenylcarbonyl group are 82.09 ( 2) and 82.05 (2), respectively. There are weak C-H...O intra- and intermolecular interactions in the crystal structure, which contribute to the stability.
Resumo:
The title compound, 2-(methoxybenzoyl)-N-phenyt-2-(1,2,4-triazol-1-yl)thioacetamide was synthesized by several reactions from 4-methoxyacetophenone, triazole and phenyl isothiocyanate. The structure was identified by elemental analysis, H-1 NMR, MS and IR. The single crystal structure of 2-(methoxybenzoyl)-N-phenyl-2-(1,2,4-triazol-1-yl)thioacetamide was determined with X-ray diffraction. The preliminary bioassays show that the title compound exhibits weak antifungal activities and plant-growth regulatory activity.
Resumo:
The crystal structure of the title compound, C19H15FN6OS, is stabilized by a weak intermolecular C-(HN)-N-... hydrogen-bond interaction.
Resumo:
In order to find leading compounds with an excellent fungicidal activity, the tide compound 2-(1,3-dithiolan-2-yl-idene) -1-phenyl-2-(1,2,4-triazol-1-yl) ethanone was synthesized according to the biological isosterism and its structure was confirmed by means of IR, MS, H-1 NMR and elemental analysis. The single crystal structure of the tide compound was determined by X-ray diffraction. The preliminary biological test shows that the synthesized compound exhibits some biological activities.
Resumo:
It has been found that microbial communities play a significant role in the corrosion process of steels exposed in aquatic and soil environments. Biomineralization influenced by microorganisms is believed to be responsible for the formation of corrosion products via complicated pathways of electron transfer between microbial cells and the metal. In this study, sulfide corrosion products were investigated for 316L stainless steel exposed to media with sulfate-reducing bacteria media for 7 weeks. The species of inorganic and organic sulfides in the passive film on the stainless steel were observed by epifluorescence microscope, environmental scanning electron microscope combined with energy dispersive spectroscopy and X-ray photoelectron spectroscopy. The transformation from metal oxides to metal sulfides influenced by sulfate-reducing bacteria is emphasized in this paper. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A simple, sensitive, and mild method for the determination of amino compounds based on a condensation reaction with 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (EDC-HCI) as the dehydrant with fluorescence detection has been developed. Amines were derivatized to their acidamides with labeling reagent 2-(2-phenyl-1H-phenanthro-[9,10-d]imidazole-1-yl)-acetic acid (PPIA). Studies on derivatization conditions indicated that the coupling reaction proceeded rapidly and smoothly in the presence of a base catalyst in acetonitrile to give the corresponding sensitively fluorescent derivatives with an excitation maximum at lambda(ex) 260nm and an emission maximum at lambda(em) 380nm. The labeled derivatives exhibited high stability and were enough to be efficiently analyzed by high-performance liquid chromatography. Identification of derivatives was carried out by online post-column mass spectrometry (LC/APCI-MS/MS) and showed an intense protonated molecular ion corresponding m/z [MH](+) under APCI in positive-ion mode. At the same time, the fluorescence properties of derivatives in various solvents or at different temperature were investigated. The method, in conjunction with a gradient elution, offered a baseline resolution of the common amine derivatives on a reversed-phase Eclipse XDB-C-8 column. LC separation for the derivatized amines showed good reproducibility with acetonitrile-water as mobile phase. Detection limits calculated from 0.78 pmol injection, at a signal-to-noise ratio of 3, were 3.1-18.2 fmol. The mean intra- and inter-assay precision for all amine levels were < 3.85% and 2.11%, respectively. Excellent linear responses were observed with coefficients of > 0.9996. The established method for the determination of aliphatic amines from real wastewater and biological samples was satisfactory. (c) 2006 Elsevier B.V. All rights reserved.