339 resultados para ADDITION POLYMERIZATION
Resumo:
A facile and efficient synthesis of substituted alpha-alkylidene-beta-lactams have been developed via a NaOH-promoted intramolecular aza-Michael addition of alpha-carbamoyl, alpha-(1-chlorovinyl) ketene-S,S-acetals and subsequent nucleophilic vinylic substitution (SNV) reaction in alcoholic aqueous media. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
In order to deal with the complicated relationships among the variables of the reactive extrusion process for activated anionic polymerization, a three-dimensional equivalent model of closely intermeshing co-rotating twin screw extruders was established. Then the numerical computation expressions of the monomer concentration, the monomer conversion, the average molecular weight and the fluid viscosity were deduced, and the numerical simulation of the reactive extrusion process of Styrene was carried out. At last, our simulated results were compared with Michaeli's simulated results and experimental results. (C) 2007 Elsevier B.V. All rights reserved
Resumo:
Copolymers of N-vinylformamide and acrylic acid were synthesized by conventional aqueous free-radical polymerization. The phase behavior of the copolymer solutions was investigated through the addition of hydrochloric acid and the variation of the temperature. With a moderate content of N-vinylformamide, the copolymers showed complex phase behaviors. Under low-acidity conditions, a suspending liquid was formed, whereas under high-acidity conditions, the random copolymers could assemble into round nanoparticles with a broad particle size distribution.
Resumo:
A novel catalyst system based on nickel(II) tetraphenylporphyrin (Ni(II)TPP) and methylaluminoxane for styrene polymerization was developed. This catalyst system has a high thermal stability and show fairly good activity. The obtained polystyrene (PS) was isotactic-rich atactic polymer by C-13 NMR analysis, and its molecular weight distribution was rather narrow (M-w/M-n approximate to 1.6, by GPC analysis). ESR revealed that Ni(II)TPP pi cation radicals were formed in the polymerization and could remain in the resulting PS stably. The mechanism of the polymerization was discussed and a special coordination mechanism was proposed. The PS product containing Ni(II)TPP pi cation radicals can be used as a potential functional material.
Resumo:
A series of new rare-earth metal bis(alkyl) complexes [L(1-3)Ln(CH2SiMe3)(2)(THF)(n)] (L-1 = MeC4H2SCH2NC6H4(Ph)(2)P=NC6H2Me3-2,4,6: Ln = Sc, n = 1 (1a); Ln = Lu, n = 1 (1b); L-2 = MeC4H2SCH2NC6H4(Ph)(2)P=NC6H3Et2-2,6: Ln = Sc, n = 1 (2a); Ln = Lu, n = 1 (2b); Ln = Y, n = 1 (2c); L-3 = MeC4H2SCH2NC6H4(Ph)(2)P=(NC6H3Pr2)-Pr-i-2,6: Ln = Sc, n = 0 (3a)) and (LSc)-Sc-4(CH2SiMe3)(2()THF) (4a) (L-4 = C6H5CH2NC6H4(Ph)(2)P=NC6H3Et2-2,6) have been prepared by reaction of rare-earth metal tris(alkyl)s with the corresponding HL1-4 ligands via alkane elimination.
Resumo:
The first xylene-bridged bis(N-heterocyclic carbene) (bis(NHC))-ligated CCC-pincer rare-earth metal dibromides (PBNHC)LnBr(2)(THF) (PBNHC = 2,6-(2,4,6-Me3C6H2NCHCHNCCH2)(2)C6H3; 1: Ln = Sc; 2: Ln = Lu; 3: Lu = Sm) were prepared by in situ treatment of a THF suspension of 2,6-bis(1-mesitylimidazolium methyl)-1-bromobenzene dibromides ((PB-NHC-Br) center dot 2HBr) and lanthanide trichlorides (LnCl(3)) with dropwise addition of nBuLi at room temperature.
Resumo:
The tridentate ligand N-(2-((2,6-diisopropylphenylimino)methyl)phenyl)quinolin-8-amine (HL) was prepared. Treatment of HL with 1 equiv of Ln(CH2SiMe3)(3)(THF)(2) afforded the corresponding rare-earth metal bis(alkyl) complexes LLn(CH2SiMe3)(2)(THF)(n) (Ln = Sc, n = 0 (1); Y, n = 1 (2); Lu, n = 0 (3)) in high yields. Variable-temperature H-1 NMR spectral analysis showed that these complexes were fluxional at room temperature. Complexes 1 and 3 were THF-free, where the metal center adopted a square-pyramidal geometry, while in 2 the metal center generated a distorted octahedral geometry owing to the coordination of a THF molecule.
Resumo:
The first aryldiimine NCN-pincer ligated rare earth metal dichlorides (2,6-(2,6-C6H3R2N=CH)(2)C6H3)LnCl(2)(THF)(2) (Ln = Y, R = Me (1), Et (2), Pr (3); R = Et, Ln = La (4), Nd (5), Gd (6), Sm (7), Eu (8), Tb (9), Dy (10), Ho (11), Yb (12), Lu (13)) were successfully synthesized via transmetalation between 2,6-(2,6-C2H3-R2N=CH)(2)-C6H3Li and LnCl(3)(THF)(1 similar to 3.5). These complexes are isostructural monomers with two coordinating THF molecules, where the pincer ligand coordinates to the central metal ion in a kappa C:kappa N: kappa N' tridentate mode, adopting a meridional geometry.
Isoprene polymerization with indolide-imine supported rare-earth metal alkyl and amidinate complexes
Resumo:
Reaction of 7-{(N-2,6-R)iminomethyl)}lindole (HL1, R = dimethylphenyl; HL2, R = diisopropylphenyl) and rare-earth metal tris(alkyl)s, Ln(CH2SiMe3)(3)(THF)(2), generated new rare-earth metal bis(alkyl) complexes LLn(CH2SiMe3)(2)(THF) [L = L-1: Ln = Lu. (1a), Sc (1b); L = L-2 : Ln = Lu (3a), Se (3b)] and mono(alkyl) complexes L-2 Lu-2(CH2SiMe3) (4a). Treatment of alkyl complexes 1a and 4a with N,N'-diisopropylcarbodiimide afforded the corresponding amidinates (LLu)-Lu-1{iPr(2)NC(CH2SiMe3) NiPr2}(2) (2a) and L-2 Lu-2{iPr(2)NC(CH2SiMe3)NiPr2} (5a), respectively.
Resumo:
Fluorenyl modified N-heterocyclic carbene ligated rare earth metal bis(alkyl) complexes, (Flu-NHC)Ln(CH2SiMe3)2 (Flu-NHC = (C13H8CH2CH2(NCHCCHN)C6H2Me3-2,4,6); Ln = Sc (1a); Ln = Y (1b); Ln = Ho (1c); Ln = Lit (1d)), were synthesized and fully characterized by NMR and X-ray diffraction analyses. Complexes Ib-d with the activation of (AlBu3)-Bu-i and [Ph3C][B(C6F5)4] exhibited high activity, medium syndio-but remarkably high 3,4-regio-selectivity, and the unprecedented livingness for the polymerization of isoprene. Such distinguished catalytic performances could be maintained under various monomer-to-initiator ratios (500-5000) and broad polymerization temperatures (25-80 degrees C).
Resumo:
Newrareearth metal bis(alkyl) complexes [(NPNPh)Ln(CH2SiMe3)(2)(THF) (NPNPh:N(Ph)PPh2=NC6H2Me3-2,4,6; Ln = Sc (3a), Ln = Y (3b), Ln = Lu (3c)) and [(NPNPy)Sc(CH2SiMe3)(2)(THF)1 (NPNPY = N(Py)PPh2=NC6H2Me3-2,4,6) (3d)) have been prepared via protonolysis reaction between rare earth metal tris(alkyl)s and the corresponding iminophosphonamines. Complexes 3a-d are analogous monomers of THF solvate. Each metal ion coordinates to a eta(2)-chelated NPN ligand and two cis-located alkyl groups, adopting tetrahedron geometry.
Resumo:
The B3LYP hybrid density functional method has been carried Out to Study theoretically the mechanisin of Pd(0)-catalyzed alkyne cyanoboration reaction. Both the intermolecular and intramolecular alkyne cyanoboration reactions were studied. For each reaction, three paths were proposed. In path A of each reaction, the first step is B-CN bond oxidative addition to bisphosphine complex Pd(PH3)(2), in path B of each reaction, the first step is alkyne coordination to bisphosphine complex Pd(PH3)2, and in path C of each reaction, the first step is the PH3 dissociation front Pd(PH3)2 to form monophosphine complex Pd(PH3) For both reactions, path B is favored.
Resumo:
The reaction mechanism of the Pd(0)-catalyzed alkyne cyanothiolation reaction is investigated by MP2, CCSD(T) and the density functional method B3LYP. The overall reaction mechanism is examined. The B3LYP results are consistent with the results of CCSD(T) and MP2 methods for the isomerization, acetylene insertion and reductive elimination steps, but not for the oxidative addition step. For the oxidative addition, the bisphosphine and monophosphine pathways are competitive in B3LYP, while the bisphosphine one is preferred for CCSD(T) and MP2 methods.
Resumo:
A series of enolic Schiff base aluminum(III) complexes LAIR (where L = NNOO-tetradentate enolic Schiff base ligand) containing ligands that differ in their steric and electronic properties were synthesized. Their single crystals showed that these complexes are five -coordinated around the aluminum center. Their coordination geometries are between square pyramidal and trigonal bipyramidal. Their catalytic properties in the solution polymerization of racemic lactide (rac-LA) were examined. The modifications in the auxiliary ligand exhibited a dramatic influence on the catalytic performance.