128 resultados para 321306 Cirugía experimental
Resumo:
In the present research work, the thermal capillary convection has been investigated and measured by particle image velocimetry (PIV) technique. There is one liquid layer in a rectangular cavity with different temperature’s sidewalls. The cavity is 52mm,42mm,20mm, 4mm in height of the silicon oil liquid layer. A sidewall of the cavity is heated by electro-thermal film, another sidewall is cooled by the semiconductor cooling sheet. The velocity field and the stream lines in cross section in liquid layer have been obtained at different temperature difference. The present experiment demonstrates that the pattern of the convection mainly relates with temperature difference.
Resumo:
Investigation of kerosene combustion in a Mach 2.5 flow was carried out using a model supersonic combustor with cross-section area of 51 mm?70 mm, with special emphases on the characterization of effervescent atomization and the flameholdering mechanism using different integrated fuel injector/flameholder cavity modules. Direct photography, Schlieren imaging, and Planar Laser Induced Fluorescence (PLIF) imaging of OH were utilized to examine the cavity characteristics and spray structure, with and without gas barbotage. Schlieren images illustrate the effectiveness of gas barbotage in facilitating atomization and the importance of secondary atomization when kerosene sprays interacting with a supersonic crossflow. OH-PLIF images further substantiate our previous finding that there exists a local high temperature radical pool within the cavity flameholder and this radical pool plays a crucial role in promoting kerosene combustion in a supersonic combustor. The present results also demonstrate that the cavity characteristics can be different in non-reacting and reacting supersonic flows. As such, the conventional definition of cavity characteristics based on non-reacting flows needs to be revised.
Resumo:
Resumo:
An optical diagnostic system consisting of the Michelson interferometer with the image processor has been developed for studying of the surface wave in the thermal capillary convection in a rectangular cavity. In this paper, the capillary convection, surface deformation and surface wave due to the different temperature between the two sidewalls have been investigated. The cavity is 52mm?42mm in horizontal cross section and 4mm in height. The temperature difference is increased gradually and flow in liquid layer will change from steady convection to unstable convection. The optical interference method measures the surface deformation and the surface wave of the convection. The deformation of the interference fringes, which produced by the meeting of the reflected light from the liquid surface and the reference light has been captured, and the surface deformation appears when the steady convection is developed. The surface deformation is enhanced with the increasing of the temperature difference, and then several knaggy peeks in the interference fringes appear and move from the heated side to the cooled side, it demonstrates that the surface wave is existed. The surface deformation, the wavelength, the frequency, and the wave amplitude of the surface wave have been calculated.
Resumo:
The experimental and theoretical investigations into the head-on collision between a landing droplet with another one resting on the PDMS substrate were addressed in this talk. The colliding process of the two droplets was recorded with highspeed camera. Four different responses after collision were observed in our experiments: complete rebound, coalescence, partial rebound with conglutination, and coalescence accompanied by conglutination. The contact time between the two colliding droplets was found to be in the range of 10-20 milliseconds. For the complete bouncing case, Hertz contact model was applied to estimate the contact time of the binary head-on colliding droplets with both the droplets considered as elastic bodies. The estimated contact time was in good agreement with the experimental result.
Resumo:
The flow-induced vibration of a cylinder with two degrees of freedom near a rigid wall under the action of steady flow is investigated experimentally. The vibration amplitude and frequency of the cylinder and the vortex shedding frequency at the wake flow region of the cylinder are measured. The influence of gap-to-diameter ratio upon the amplitude response is analyzed. The experimental results indicate that when the reduced velocity (Vr) is in the range of 1.2 < Vr < 2.6, only streamwise vibration with small amplitude occurs, whose frequency is quite close to its natural frequency in the still water. When the reduced velocity Vr > 3.4, both the streamwise and transverse vibrations of the cylinder occur. In this range, the amplitudes of transverse vibration are much larger than those of streamwise vibrations, and the amplitudes of the streamwise vibration also get larger than those at the range of 1.2 < Vr < 2.6. At the range of Vr > 3.4, the frequency of streamwise vibration undergoes a jump at certain values of Vr, at which the streamwise vibrating frequency is twice as much as the transverse one. However, when the streamwise vibration does not experience a jump, its frequency is the same as that of the transverse vibration. The maximum values of second streamwise and transverse vibration amplitudes increase with increasing gap-to-diameter ratios.
Resumo:
Very-High-Cycle Fatigue (VHCF) test for a medium carbon structural steel (40Cr) has been performed and a stepwise S-N curve was obtained by employing cantilever-type rotary bending fatigue machine with hourglass shape specimen. The S-N curve was well explained as a combination of curves for surface-induced fracture and interior inclusion-induced fracture with fish-eye patterns. The morphology of the fish-eye pattern was illustrated in order to clarify subsurface crack initiation and propagation behavior.
Resumo:
Poly(dimethylsiloxane) (PDMS) is usually considered as a dielectric material and the PDMS microchannel wall can be treated as an electrically insulated boundary in an applied electric field. However, in certain layouts of microfluidic networks, electrical leakage through the PDMS microfluidic channel walls may not be negligible, which must be carefully considered in the microfluidic circuit design. In this paper, we report on the experimental characterization of the electrical leakage current through PDMS microfluidic channel walls of different configurations. Our numerical and experimental studies indicate that for tens of microns thick PDMS channel walls, electrical leakage through the PDMS wall could significantly alter the electrical field in the main channel. We further show that we can use the electrical leakage through the PDMS microfluidic channel wall to control the electrolyte flow inside the microfluidic channel and manipulate the particle motion inside the microfluidic channel. More specifically, we can trap individual particles at different locations inside the microfluidic channel by balancing the electroosmotic flow and the electrophoretic migration of the particle.
Resumo:
A new idea of drag reduction and thermal protection for hypersonic vehicles is proposed based on the combination of a physical spike and lateral jets for shock-reconstruction. The spike recasts the bow shock in front of a blunt body into a conical shock, and the lateral jets work to protect the spike tip from overheating and to push the conical shock away from the blunt body when a pitching angle exists during flight. Experiments are conducted in a hypersonic wind tunnel at a nominal Mach number of 6. It is demonstrated that the shock/shock interaction on the blunt body is avoided due to injection and the peak pressure at the reattachment point is reduced by 70% under a 4A degrees attack angle.
Resumo:
In this paper, multi-hole cooling is studied for an oxide/oxide ceramic specimen with normal injection holes and for a SiC/SiC ceramic specimen with oblique injection holes. A special purpose heat transfer tunnel was designed and built, which can provide a wide range of Reynolds numbers (10(5)similar to 10(7)) and a large temperature ratio of the primary flow to the coolant (up to 2.5). Cooling effectiveness determined by the measured surface temperature for the two types of ceramic specimens is investigated. It is found that the multi-hole cooling system for both specimens has a high cooling efficiency and it is higher for the SiC/SiC specimen than for the oxide/oxide specimen. Effects on the cooling effectiveness of parameters including blowing ratio, Reynolds number and temperature ratio, are studied. In addition, profiles of the mean velocity and temperature above the cooling surface are measured to provide further understanding of the cooling process. Duplication of the key parameters for multi-hole cooling, for a representative combustor flow condition (without radiation effects), is achieved with parameter scaling and the results show the high efficiency of multi-hole cooling for the oblique hole, SiC/SiC specimen. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Microgravity fluid physics is an important part of microgravity sciences, which consists of simple fluids of many new systems, gas-liquid two-phase flow and heat transfer, and complex fluid mechanics. In addition to the importance of itself in sciences and applications, microgravity fluid physics closely relates to microgravity combustion, space biotechnology and space materials science, and promotes the developments of interdisciplinary fields. Many space microgravity experiments have been per- formed on board the recoverable satellites and space ships of China and pushed the rapid development of microgravity sciences in China. In the present paper, space experimental studies and the main re- sults of the microgravity fluid science in China in the last 10 years or so are introduced briefly.
Resumo:
The coupling mechanisms and flow characteristics of thermocapillary convection in a thin liquid layer with evaporating interface were studied. The planar liquid layer, with the upper surface open to air, was imposed externally horizontal temperature differences. The measured average evaporating rates and interfacial temperature profiles indicated the relative importance of evaporation effect and thermocapillary convection under different temperature gradients. A temperature jump was found at the interface, which was thought to be related to the influence of evaporation effect. All above mentioned results were repeated in a rarely evaporating liquid to compare the influence of evaporation effect.
Resumo:
In this paper, the first Chinese microgravity (μ-g) experimental study on coal combustion was introduced. An experimental system used to study the ignition process of single coal particles was built up, complying with the requirements of the 3.5 s drop tower in the National Microgravity Laboratory of China (NMLC). High volatile bituminous and lignite coal particles with diameter of 1.5 and 2.0 mm were tested. The ignition and combustion process was recorded by a color CCD and the particle surface temperature before and at the ignition was determined by the RGB colorimetric method. Comparative experiments were conducted at normal gravity (1-g). The experiments revealed that at different gravity levels, the ignition of all tested coal particles commenced in homogeneous phase, while the shape, structure, brightness and development of the flames, as well as the volatile matter release during the ignition process are different. At μ-g, the part of volatile was released as a jet, while such a phenomenon was barely observed at 1-g. Also, after ignition, flames were more spherical, thicker, laminated and dimmer at μ-g. It was confirmed that ignition temperature decreased as the particle size or volatile content increased. However, contradicted to existing experimental results, provided other experimental conditions except gravity level were the same, ignition temperature of coal particles was about 50–80 K lower at μ-g than that at 1-g.
Resumo:
Jacket platform is the most widely used offshore platform. Steel rubber vibration isolator and damping isolation system are often used to reduce or isolate the ice-induced and seismic-induced vibrations. The previous experimental and theoretical studies concern mostly with dynamic properties, vibration isolation schemes and vibration-reduction effectiveness analysis. In this paper, the experiments on steel rubber vibration isolator were carried out to investigate the compressive properties and fatigue properties in different low temperature conditions. The results may provide some guidelines for design of steel rubber vibration isolator for offshore platform in a cold environment, and for maintenance and replacement of steel rubber vibration isolator, and also for fatigue life assessment of the steel rubber vibration isolator. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
In this study, the vortex-induced vibrations of a cylinder near a rigid plane boundary in a steady flow are studied experimentally. The phenomenon of vortex-induced vibrations of the cylinder near the rigid plane boundary is reproduced in the flume. The vortex shedding frequency and mode are also measured by the methods of hot film velocimeter and hydrogen bubbles. A parametric study is carried out to investigate the influences of reduced velocity, gap-to-diameter ratio, stability parameter and mass ratio on the amplitude and frequency responses of the cylinder. Experimental results indicate: (1) the Strouhal number (St) is around 0.2 for the stationary cylinder near a plane boundary in the sub-critical flow regime; (2) with increasing gap-to-diameter ratio (e (0)/D), the amplitude ratio (A/D) gets larger but frequency ratio (f/f (n) ) has a slight variation for the case of larger values of e (0)/D (e (0)/D > 0.66 in this study); (3) there is a clear difference of amplitude and frequency responses of the cylinder between the larger gap-to-diameter ratios (e (0)/D > 0.66) and the smaller ones (e (0)/D < 0.3); (4) the vibration of the cylinder is easier to occur and the range of vibration in terms of V (r) number becomes more extensive with decrease of the stability parameter, but the frequency response is affected slightly by the stability parameter; (5) with decreasing mass ratio, the width of the lock-in ranges in terms of V (r) and the frequency ratio (f/f (n) ) become larger.