218 resultados para spin sistemak


Relevância:

20.00% 20.00%

Publicador:

Resumo:

By using polarization-resolved photoluminescence spectra, we study the electron spin relaxation in single InAs quantum dots (QDs) with the configuration of positively charged excitons X+ (one electron, two holes). The spin relaxation rate of the hot electrons increases with the increasing energy of exciting photons. For electrons localized in QDs the spin relaxation is induced by hyperfine interaction with the nuclei. A rapid decrease of polarization degree with increasing temperature suggests that the spin relaxation mechanisms are mainly changed from the hyperfine interaction with nuclei into an electron-hole exchange interaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the framework of effective-mass envelope function theory, including the effect of Rashba spin-orbit coupling, the binding energy E-b and spin-orbit split energy Gamma of the ground state of a hydrogenic donor impurity in AlGaN/GaN triangle-shaped potential heterointerface are calculated. We find that with the electric field of the heterojunction increasing, (1) the effective width of quantum well (W) over bar decreases and (2) the binding energy increases monotonously, and in the mean time, (3) the spin-orbit split energy Gamma decreases drastically. (4) The maximum of Gamma is 1.22 meV when the electric field of heterointerface is 1 MV/cm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We theoretically investigate the spin-dependent transport through Cd1-xMnxTe diluted magnetic semiconductor (DMS) quantum dots (QD's) under the influence of both the external electric field and magnetic field using the recursion method. Our results show that (1) it can get a 100% polarized electric current by using suitable structure parameters; (2) for a fixed Cd1-xMnxTe DMS QD, the wider the system is, the more quickly the transmission coefficient increases; (3) for a fixed system length, the transmission peaks of the spin-up electrons move to lower Fermi energy with increasing Cd1-xMnxTe DMS QD radius, while the transmission of the spin-down electrons is almost unchanged; (4) the spin-polarized effect is slightly increased for larger magnetic fields; (5) the external static electric field moves the transmission peaks to higher or lower Fermi energy depending on the direction of the applied field; and (6) the spin-polarized effect decreases as the band offset increases. Our calculated results may be useful for the application of Cd1-xMnxTe DMS QD's to the spin-dependent microelectronic and optoelectronic devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The energy dispersion of an electron in a double quantum wire with a diluted magnetic semiconductor barrier in between is calculated. An external magnetic field modifies significantly the energy dispersion of the electron which is different for the two spin states. The conductance exhibits many interesting peaks and dips which are directly related to the energy dispersions of the different electron spin states. These phenomena are attributed to the interwell coupling which can be tuned by the magnetic field due to the s-d exchange interaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have calculated the in-plane conductance of a barrier with the Dresselhaus spin-orbit interaction, which is sandwiched between two spin-polarized materials aligned arbitrarily. Besides a transmitted in-plane current which arises on the drain side as pointed out in Phys. Rev. Lett. 93, 056601 (2004), a reflected in-plane current always appears simultaneously on the source side near the interface of the barrier. The spin polarization of the source affects the transmitted current more than the reflected one, and conversely the spin polarization of the drain affects the reflected current more. The relationship between transmitted current and the reflected one has been studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spin-dependent tunneling through a symmetric semiconductor barrier is studied including the k(3) Dresselhaus effect. The spin-dependent transmission of an electron can be obtained analytically. By comparing with previous work [Phys. Rev. B 67, 201304(R) (2003) and Phys. Rev. Lett. 93, 056601 (2004)], it is shown that the spin polarization and interface current are changed significantly by including the off-diagonal elements in the current operator, and can be enhanced considerably by the Dresselhaus effect in the contact regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal entanglement in a two-qubit Heisenberg XXZ spin chain is investigated under an inhomogeneous magnetic field b. We show that the ground-state entanglement is independent of the interaction of z-component J(z). The thermal entanglement at the fixed temperature can be enhanced when J(z) increases. We strictly show that for any temperature T and J(z), the entanglement is symmetric with respect to zero inhomogeneous magnetic field, and the critical inhomogeneous magnetic field b(c) is independent of J(z). The critical magnetic field B-c increases with the increasing parallel to b parallel to but the maximum entanglement value that the system can arrive at becomes smaller.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electron spin relaxation induced by phonon-mediated s-d exchange interaction in a II-VI diluted magnetic semiconductor quantum dot is investigated theoretically. The electron-acoustic phonon interaction due to piezoelectric coupling and deformation potential is included. The resulting spin lifetime is typically on the order of microseconds. The effectiveness of the phonon-mediated spin-flip mechanism increases with increasing Mn concentration, electron spin splitting, vertical confining strength, and lateral diameter, while it shows nonmonotonic dependence on the magnetic field and temperature. An interesting finding is that the spin relaxation in a small quantum dot is suppressed for strong magnetic field and low Mn concentration at low temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the spin polarized current through a quantum dot connected to ferromagnetic leads in the presence of a finite spin-dependent chemical potential. The effects of the spin polarization of the leads p and the external magnetic field B are studied. It is found that both the magnitude and the symmetry of the current are dependent on the spin polarization of the leads. When the two ferromagnetic leads are in parallel configuration, the spin polarization p has an insignificant effect on the spin current, and an accompanying charge current appears with the increase of p. When the leads are in antiparallel configuration, however, the effect of p is distinct. The charge current is always zero regardless of the variation of p in the absence of B. The peaks appearing in the pure spin current are greatly suppressed and become asymmetric as p is increased. The applied magnetic field B results in an accompanying charge current in both the parallel and antiparallel configurations of the leads. The characteristics of the currents are explained in terms of the density of states of the quantum dot.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spin-polarized transport property of a diluted magnetic semiconductor two-dimensional electron gas is investigated theoretically at low temperature. A large current polarization can be found in this system even at small magnetic fields and oscillates with increasing magnetic field while the carrier polarization is vanishingly small. The magnitude as well as the sign of the current polarization can be tuned by varying magnetic field, the electron density and the Mn concentration. (c) 2005 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spin-polarized tunneling through a diluted magnetic semiconductor quantum dot embedded in a tunneling barrier is investigated using the Bardeen transfer Hamiltonian. The tunneling current oscillates with an increasing magnetic field for a fixed bias. Many peaks are observed with an increasing external bias under a fixed magnetic field. Spin polarization of the tunneling current is tuned by changing the external bias under a weak magnetic field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Submicron Hall magnetometry has been demonstrated as an efficient technique to probe extremely weak magnetic fields. In this letter, we analyze the possibility of employing it to detect single electron spin. Signal strength and readout time are estimated and discussed with respect to a number of practical issues. (C) 2005 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal entanglement in a two-qubit Spin-1 system with two spins coupled by exchange interaction is investigated in terms of the measure of entanglement called "negativity". It is found that the thermal entanglement exists and is symmetric for both ferromagnetic and antiferromagnetic exchange couplings. Moreover, the critical temperature at which the negativity vanishes increases with the exchange coupling constant J. From the temperature and magnetic field dependences we demonstrate that the temperature and the magnetic field can affect the feature of the thermal entanglement significantly. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have proposed a device, a superconducting-lead/quantum-dot/normal-lead system with an ac voltage applied on the gate of the quantum dot induced by a microwave, based on the one-parameter pump mechanism. It can generate a pure charge- or spin-pumped current. The direction of the charge current can be reversed by pushing the levels across the Fermi energy. A spin current arises when a magnetic field is applied on the quantum dot to split the two degenerate levels, and it can be reversed by reversing the applied magnetic field. The increase of temperature enhances these currents in certain parameter intervals and decreases them in other intervals. We can explain this interesting phenomenon in terms of the shrinkage of the superconducting gap and the concepts of photon-sideband and photon-assisted processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dynamics of spin-dependent tunneling through a nonmagnetic semiconductor double-barrier structure is studied including the k(3) Dresselhaus spin orbit coupling is solved by the time-dependent Schrodinger equation with a developed method for the finite-difference relaxation. The resonant peak and quasibound level lifetime are determined by the in-plane wave vector and the applied electric field. The buildup time and decay lifetime of resonant probability amplitude are different for the spin-down and spin-up electrons due to the Dresselhaus spin-orbit coupling. Further investigation shows that the steady spin-polarization in both the well and collector regions has been obtained in the time domain. (C) 2007 American Institute of Physics.