80 resultados para selenium
Resumo:
一定元素的同位素组成被认为是该元素特有的“指纹”,同位素组成测量是地球化学、生命科学、环境化学、地质科学和核科学等领域重要的研究手段。利用同位素技术开展生命过程,地球系统中的物理、化学、生物过程及其资源、环境与灾害效应,资源勘探,污染物溯源等方面的研究,既是该技术的前沿研究主题,也使相关领域的研究更加“精细量化”,从而在新的科学纵深揭示出更加清晰的规律。 1992年多接收电感耦合等离子体质谱仪(MC-ICP-MS)的问世,为同位素分析提供了一种强有力的技术手段,与传统的热电离同位素质谱相比,MC-ICP-MS具有测量速度快、操作简便、灵敏度高等优点。而且,由于等离子体源产生的高温,在理论上能测量所有的金属元素和一些非金属元素,并已很好地解决了一些高电离电位元素同位素测量的难题(如Se, Zn, Hf等),用MC-ICP-MS准确、精密测量各种元素同位素组成的方法正在逐渐得到发展和完善。目前,MC-ICP-MS比较成熟的方法主要是针对核和地质科学研究中应用较多的U, Pb, Sm, Nd, Sr, Hf, B, Li等,在硒和锌同位素测量方法学的研究还相对较少(尤其是硒),对一些测量中受各种干扰较为严重的、原子量小于80 的元素同位素的测量技术还有待进一步深入探索和研究。锌、硒元素不仅与人类健康息息相关,而且随着质谱分析技术的发展,使其在环境地球化学、生命科学等领域有着广泛的应用前景。准确测量生物、食品、环境、地质等样品中的锌、硒元素含量、各种形态及其同位素组成受到越来越多的关注。锌、硒同位素准确测量的方法学研究,不仅可以广泛应用于各相关领域,也为锌和硒同位素基、标准物质研制奠定技术基础,从而为锌、硒元素含量和同位素测量提供量值溯源保障。 本工作针对锌和硒元素同位素组成以及生物、环境等样品中成分量准确测量存在的问题,通过使用六极杆碰撞室MC-ICP-MS进行准确测量锌和硒元素同位素的技术研究,结合在化学计量研究中的长期实践及相关文献,从方法学角度和应用方面得出以下结论: 1.MC-ICP-MS仪器测量主要参数,如炬管轴向位置、载气流量、碰撞气流量、仪器稳定性等对测量结果影响很大,要获得高精度的测量结果,须优化和固定参数设置,保持仪器的稳定状态。在六极杆碰撞室MC-ICP-MS测量锌同位素时,高纯氩气碰撞气模式是较为理想的模式,64Zn/66Zn、67Zn/66Zn、68Zn/66Zn同位素丰度比测量精度达到0.002-0.008%,70Zn/66Zn 测量精度达到0.01%;在高纯氢气和氩气碰撞气按一定比例混合的模式下, 76Se/80Se、77Se/80Se、78Se/80Se、82Se/80Se同位素丰度比测量精度达到0.004-0.005%。 2.采用高纯、高浓缩64Zn和66Zn配制了8个校正样品 (64Zn/66Zn:0.6-2.2);用高纯、高浓缩同位素76Se和82Se配制了16个校正样品(76Se/82Se: 0.05-11.8),用这些样品分别测量并计算了仪器系统误差校正系数K,这些校正样品的K64/66 和 K76/82的相对标准偏差分别为0.034%和0.03%,均在仪器的测量不确定度范围内,说明在校正样品同位素变化范围内,仪器测量同位素丰度比的校正系数没有发生明显变化。 3.在硒同位素丰度比值测量中,氢气碰撞气的使用是SeH产生的重要原因之一,Ar/H在2-7之间都可以满足硒同位素比值测量的要求,即保证较高的硒灵敏度、较小的SeH生成比例、稳定的同位素比值测量结果。本工作建立了SeH的校正计算公式,在对测量结果的质量歧视进行校正时,77Se和78Se的校正更为复杂,因为它们除自身产生的SeH外,还分别受到了来自76SeH和77SeH的影响,故校正质量偏移时应首先对SeH进行校正。对于不同的SeH生成比例,经过校正后,硒的同位素丰度比校正值是一致的,并不受SeH生成比例变化影响。 4.通过对IDMS过程中的关键技术研究,明确了如何正确使用该方法以获得准确测量结果。IDMS方法在测量步骤中引入的不确定度影响因素相对于其它化学分析方法较少,并且可以被明确地表达出来,测量结果可直接溯源到国际单位,因此,该方法对化学计量学研究具有十分重要的意义。 5.建立了适用于ICP-MS测量血清、大豆粉、金枪鱼等多种复杂基体中锌和硒元素的样品前处理方法,建立了锌和硒的ICP-IDMS测量方法。将建立的方法应用于人血清标准物质研制、国家计量院之间的国际比对和合作研究中,取得的优异成绩验证了所建方法的可靠性和可比性。IDMS方法在样品前处理上不怕样品损失和高精度同位素丰度比测量的优点,使其在复杂基体中硒、锌的准确测量方面较其它分析方法具有独特的优势,可在生物、临床、环境、食品等方面的分析研究中广泛应用。
Resumo:
氧化还原敏感元素硒的地球化学循环非常复杂, 它的循环主要受氧化还原势、酸碱度、温度、压力等条件的控制。长期以来,关于硒的主要研究集中在环境生物地球化学领域。对于硒的地质地球化学行为的研究,学者们认为硒不可能独立形成矿床,它主要以伴生元素的形式赋存于一些热液矿床(如,拉尔玛硒-金热液矿床等)。 二十世纪末, 我国学者开始关注硒的矿床地球化学行为, 发现了目前唯一的渔塘坝沉积型的独立硒矿床。另外,下寒武统底部黑色岩系(如,遵义牛蹄塘组)处于地球发展演化的关键时期且富集了众多的有用金属元素, 因此它引起了全世界广大地质学家的普遍关注和重视。这些黑色岩系的共同特点是含有大量的有机质和丰富的金属元素(PGE,Cu,Ni,Mo,Au,U,V,Mn,Fe,Co,Bi,Cr,Se等)。但遵义牛蹄塘组中Ni-Mo多金属层的成因一直争论不休。 本文以拉尔玛硒-金热液矿床、渔塘坝独立硒矿床、遵义黄家湾含Ni-Mo-Se多金属层剖面为研究对象,主要通过硒稳定同位素的测试和不同化学形态的分析结合其他的地球化学参数(如,C-S-Fe体系,氧化还原敏感元素),示踪富硒地层的沉积环境,研究不同地质体系中硒稳定同位素的组成,进而完善硒同位素的理论体系,探讨硒富集过程中的形态迁移途径,并为矿床的形成提供更完善的地球化学证据。通过一系列的研究工作,我们取得了以下几点认识: (1) 通过不同的消解方法准确测定了低硒,高硒样品的总硒含量,相对标准偏差小于10%,而且不同的消解方法测得同样的结果, 满足了地质样品中微量元素的测试要求。由于不同消解方式存在自身的优缺点,我们建议根据不同的样品类型,不同的研究目的选取合适的消解方法。 (2) 通过巯基棉吸附装置达到了纯化富集样品硒的目的, 硒的回收率一般大于90%, 满足同位素测试的需要。应用自制的氢化物发生器与Nu-MC-ICP-MS联用,实现了在线气体进样测试硒稳定同位素的目的。 采用标准样品匹配测试方法校正仪器测试过程中的质量分馏。 硒稳定同位素的测试精度为2δ=0.30‰, 标准NIST SRM 3149采用与样品同样的处理方法,没有发现前处理过程的同位素分馏。 (3) 传统地球化学参数对沉积环境的指示意义。通过氧化还原敏感微量元素及其与TOC的关系和C-S-Fe体系的分析,对渔塘坝独立硒矿床的多元素富集及沉积环境, 遵义黑色岩系沉积环境进行了详细的解释。TS-TFe的关系表明样品中有过量的硫存在,可能为有机硫或为其他亲硫元素提供有利的沉淀条件。C-S-Fe体系及微量元素指数V/(V + Ni) 说明渔塘坝矿区的硅质岩和页岩的沉积环境为缺氧到静海环境, Ni/Co、V/Cr几乎不能作为该区缺氧环境的指示参数, 后者可能由于Cr的外源输入(碎屑、热液等)所致。 C-S-Fe体系及微量元素指数V/(V + Ni)体系指示遵义黑色岩系的沉积环境为微含氧到缺氧的条件, 但对于Ni-Mo矿而言, V/(V + Ni)体系指示其为含氧条件沉积,这可能与Ni-Mo多金属层的成因有关。但铁的硫化度可以指示Ni-Mo多金属层极端的缺氧还原环境。 (4) 硒的形态对古氧化还原条件和矿物质来源的示踪意义。黑色岩系的硒形态分布不同于海洋沉积物,体现了成岩作用对硒形态分布的改变。黑色岩系中硒的主要形态为有机结合态和硫化物/硒化物结合态。硫化物/硒化物结合态比例与铁的硫化程度(DOS)之间明显的相关关系说明在海洋环境中硒主要通过氧化还原反应富集在富有机质的沉积物与沉积岩中。这种相关关系与岩石类型没有关系,这使得将硫化物、硒化物结合的Se(-II)比例作为一个氧化还原条件示踪剂更加可行。DOS与硫化物/硒化物结合态硒的关系,及Se(IV)与Se(-II)的关系均说明遵义牛蹄塘组的K-斑脱岩形成于碱性的氧化环境,Ni-Mo多金属层沉积于微酸性的极端还原环境,而渔塘坝矿床形成于微碱性的还原缺氧环境。生物的同化作用与异化作用之间本身存在互补关系,但这种互补关系却存在不同的转化趋势。不同的转化趋势可能主要受氧化还原反应和酸碱度的控制,其他的地质作用也可能起着重要作用(如,硅酸盐、Fe(II)的含量,硫化物、有机质含量,风化程度等)。同时我们发现相同的氧化还原条件下可能存在不同的富集途径。Ni-Mo多金属层中极少的有机结合态硒暗示海洋同生沉积主要被生物异化还原控制,而沉积物从海洋富集硒的途径主要为直接由Se(VI)和Se(IV)到Se(-II)的还原途径,从高价态到元素态的还原途径可能偶有发生但强度很小。 (5) 硒稳定同位素对矿床成因及物质来源的示踪意义。热液或表生环境中,硒的再次活化迁移对硒同位素的大范围分馏是很重要的。较少的硫化物结合态硒和较大范围的硒同位素组成说明渔塘坝矿床形成时经历了多次氧化还原过程。干酪根硒同位素组成与全岩相似, 而且样品富集轻同位素暗示该矿床硒来的富集主要通过海洋硒的生物吸收同化异化还原与多次无机氧化还原实现。对于拉尔玛金硒矿床而言,未蚀变岩体的硫化物结合态硒富集轻同位素,而后期低温流体的蚀变作用导致蚀变岩体中硫化物结合态硒富集重同位素。干酪根的硒同位素组成暗示热液输入的硒为该矿床硒的主要来源,硒从热液直接进入干酪根的机制是一致的。随着硫含量的增加岩石和矿体中的硒逐渐富集重同位素, 说明海水对矿床富集的贡献是很有限的。遵义黑色岩系中硒同位素组成与Se(-II)之间的关系, 单质硒的缺乏,硒的富集与同位素的关系说明,热液为主要的硒来源,而早寒武世海水中的硒主要通过Se(VI)和Se(IV)到Se(-II)的直接生物还原实现。三个区域的S/Se比值综合说明硫与硒的共同沉降过程中不存在硒的同位素分馏。不同化学形态的分布与不同形态中硒稳定同位素的结合可能会更好的解释硒的全球地球化学循环。 (6) 根据目前硒的同位素分馏体系及所测得的数据,我们初步建立了不同时代、不同成因黑色岩系中硒稳定同位素的分馏模式。
Resumo:
硒是人体和动物必需的微量元素,摄入过高或过低均可导致不同的健康效应。已有的研究表明,硒的生物有效性不仅与地质环境中的总硒有关,更取决于硒的形态分布。不同形态的硒具有显著差异的地球化学特性,影响着环境中硒的迁移、循环、生物有效性和毒性。渔塘坝是中国唯一发生过人群硒中毒爆发性流行的地区,该地区风化富硒碳质岩和高硒土壤中有机结合态硒可达到总硒的60%以上,而有机结合态硒的进一步研究有助于深入了解硒的分布和生物可利用性,阐明富硒碳质岩风化及其成土过程中硒的生物地球化学次生富集过程与循环机制。本论文利用改进的7步连续化学浸提技术和优化的有机结合态硒提取方案,使用氢化物发生-原子荧光光谱法,研究了恩施表生高硒环境中有机结合态硒的形态分布,得出了以下几点结论: 1. 在硒七步连续提取方案的基础上,对影响硒提取的因素如液固比、提取剂浓度等进行了优化、并对不同结合态(相态)硒提取中的若干问题进行了讨论。研究结果表明,硒的连续化学提取过程中,液固比为20:1到50:1时能够满足不同结合态硒提取的要求;在水浴加热条件下,NaOH浓度0.1M~0.5M时能有效提取有机结合态硒;1M Na2SO3溶液是元素硒的较好提取剂;而对于硫化物/硒化物结合态硒,合适配比的NaOH+H2O2混合液有利于H2Se的完全吸收,500~600mL/min的载气气流能保证其被CrCl2+HCl混合液还原所产生H2Se气体的完全吸收。 2. 利用优化的连续化学浸提方案提取风化富硒碳质岩石和高硒土壤样品的有机结合态硒,进而分离出富里酸硒和胡敏酸硒,并用高压密闭消化-氢化物原子荧光光谱法测定了硒的含量。该方案的回收率为84.4~104.2%,平均回收率为96.1%;有机结合态硒与胡敏酸富里酸硒加和值之间有良好的一致性,线性相关系数为0.999(n=14),斜率为1.0026。而后使用自制的氢化物反应发生和吸收装置进一步分离了与富里酸(胡敏酸)吸附的Se(IV)和强结合的硒,其中分离富里酸硒的回收率为86.3%~107.6%,平均值为97.1%;分离胡敏酸硒的回收率为85.5%~105.9%,平均值为97.9%。表明本论文所采用的实验方案是切实可行的。 3. 风化富硒碳质岩石样品中胡敏酸硒比例较高,所占比例为36.3%~75.8%,平均值为58.1%,但胡敏酸硒并不是占有绝对的优势,且各个样品之间存在较大差异。高硒土壤样品中富里酸硒占有机结合态比例在25.4%~85.0%,除个别样品外,多数样品的富里酸硒所占比例均在70%~80%,表明富里酸硒是渔塘坝土壤有机结合态硒的一种主要存在形式,在适当的条件下(如环境的pH-Eh变化),能够被转化从而被植物吸收利用。并且这种岩石中胡敏酸硒含量高、土壤中富里酸硒含量高的分布特征指示了硒在风化过程中可能的迁移和转化规律。 4. 富里酸硒和胡敏酸硒的形态分析表明,不同岩石样品中各有机结合态硒的形态分布差异较大,分布规律不明显,这可能与岩石样品的风化程度有关;而对于土壤样品,不论是在富里酸还是胡敏酸中,吸附Se(IV)的含量都大于强结合硒,尤其是富里酸中的吸附Se(IV),平均值为83.4%,最高达95.4%。这部分吸附的Se(IV)相对于强结合的富里酸硒更容易被释放,而这也进一步佐证了富里酸硒易于受环境变化(pH-Eh)和倍半氧化物等的影响而转变为生物可利用态硒。 5. 无论是胡敏酸强结合硒(HA-Se)还是富里酸强结合硒(FA-Se)均在有机结合态硒中以一定的比例存在,对这部分硒的研究还仅局限于定量,而其究竟是以何种形态、以何种方式与腐殖质结合尚不清楚。因此,有必要对这部分硒进行进一步研究。
Resumo:
在湖北恩施市双河乡渔塘坝,下二叠茅口组顶部的合碳硅质岩段硒的异常富集形成了硒的独立矿床,该矿床自发现以来,大多集中在环境和矿床地质方面的研究,还未有系统的地球化学证据解释其成因.该文通过地球化学手段,以硒的存在形式、地球化学和富集机制为主线,对渔塘坝硒矿床的地球化学进行初始的研究,首次提供了有关渔塘坝硒矿床较全面的地球化学证据,包括硒的存在形式和矿物组合、硒矿石岩石化学特征和分类、微量和稀土元素特征、稳定同位素组成(Si、O和S)、有机地求化学特征,并对渔塘坝硒矿床的成因做了可靠而全面的阐述.
Resumo:
在自然界中存在一套由硅质岩、泥质岩/页岩或板岩、碳酸盐岩和粉砂岩组成的沉积建造,并以富含有机质和菌藻微生物等为特征,沉积厚度较大,岩石类型以硅岩为主,称之为“硅岩建造”。硅岩建造中的硅质岩不仅是许多重要矿种(如金、硒、铀、钒、磷、锰、铂族元素、重晶石和黄铁矿等)的赋存层和含矿岩系的重要岩类,而且由于它形成于特定的地球化学条件下,能够反映出某些沉积相带特殊的地质背景,另外,硅质岩本身就是一种生物岩,对探讨生物成岩、成矿作用有重要意义。所以对硅岩建造及其内硅质岩研究具有十分重要的理论意义和实用价值。因此,本论文选择扬子地块周边寒武系(南秦岭紫阳硒富集区)、二叠系(湖北恩施双河渔塘坝硒矿床)富硒硅岩建造为研究对象。通过岩石地球化学、同位素地球化学、矿物学以及流体包裹体等方法从含硒规律、岩石成因、沉积环境、成矿流体性质等方面,分别对对两个不同时代或不同层位的富硒硅岩建造开展了系统的地球化学对比研究;并从矿物学、包裹体成分及物理化学条件等方面对渔塘坝硒矿床的成因作了探讨。通过研究,取得了以下主要认识:1渔塘坝硒矿区和紫阳硒富集区富硒硅岩建造岩石以硅质岩为主,硅质岩中5102含量范围分别为64.2%-95.84%和63.62%-95.24%。同时包括部分碳质硅质岩丫碳质页岩 和碳、硅板岩及含腐泥层的石煤;渔塘坝硒矿床硅质岩中Se含量大于80ug/g的样品均采自下二叠统茅口组的硅质岩段内,紫阳下寒武统硒富集体中硅质岩中硒的含量最高(可达278ppm)。2微量元素研究表明,两地区富硒硅质岩中均含有较高的Cu,Ni、V、As、Sb、Cr,且U/Th>1。在U-Th、Zr-Cr和P2O5-Y相关图以及Fe-Mn-(Cu+Co+Ni)三角图上,两研究区内硅质岩样品点均落于热水沉积区。渔塘坝硒矿区硅质岩的REE总量较低,平均为38.9×10-6,紫阳硒富集区硅质岩REE总量除个别较高(达110×10-6以上)外,总体也较低(12.0-37.6)×l0-6;另外,从稀土元素配分模式看,两地区硅质岩均有较明显的Ce负异常,且Eu从无明显Eu异常到出现正Eu异常。都反映出热水沉积硅质岩的特征。从si和O同位素组成来看,两个地区硅质岩的δ3051和δ18O值也总体位于热水成因硅质岩区域内。根据隧石一水的氧同位素分馏方程计算得知,两研究区硅质岩的形成温度分别为46℃-72℃和78.6℃-126.20℃。地球化学特征表明,两地区富硒硅质岩均来自热水沉积作用。另外,渔塘坝硒矿区硅质岩中Cr含量较高,且存在腕足类生物化石;紫阳硒富集区硅质岩中Ba及有机质含量较高,且存在叶琳生物标志化合物。结合两地区碳同位素组成特征(渔塘坝地区δ13c为正值,可能和上扬子区早、晚二叠世之间多期次喷发的火山活动,造成地球史上二叠纪生物大灭绝有关;紫阳地区δ13C为负值,说明碳同位素来源于沉积有机物质),暗示两地区硅质岩的成因可能与火山沉积作用有关,且在成岩过程中有部分生物的参与。3渔塘坝赋矿硅质岩硫同位素组成具有较高的负值,表明矿床形成于缺氧的海盆内:紫阳硒富集区形成黄铁矿的硫主要来自海水硫酸盐。4系统研究了渔塘坝硒矿区硒的矿物学,显示硒以自然硒、独立矿物、类质同像及有机吸附四种形式赋存于矿床中。废弃石煤堆中的自然硒矿物,是自然因素和人为活动共同干预的结果,并非石煤的缓慢自燃的结果。5对研究区成矿流体中包裹体均一温度、盐度和密度进行了系统研究,结果显示:两地区的流体包裹体以原生包裹体为主,数量较多且形态复杂;研究区(渔塘坝硒矿和紫阳硒富集区)成矿流体处于中一低温( 190-250)℃和(120-155)℃条件。渔塘坝硒矿区石英和方解石包裹体内的流体盐度分别为(5.9-10.l)B%和(3.9-4.5)WB%,紫阳硒富集区流体盐度为(1.2-2.8)WB%,后者流体盐度明显低于前者。流体密度经计算分别为0.79-0.79/cm3和0.69-0.969/cm3。重点对渔塘坝硒矿区的石英和方解石包裹体进行了拉曼光谱成分测试,结果显示:包裹体成分以H2O和N2为主,含少量 CH4、C2H4、C2H6、C3H5、C4H6、C4H4和C6H6等成分,说明成矿溶液介质主要为具有还原性质的水溶液,其成矿条件具还原性的特点。6渔塘坝硒矿区成矿物理化学条件的研究表明,即富硒成矿流体为中低温(190-250)℃、压力平均为60Mpa。成矿早期02、eZ相对较低,乃较高,且fS2/fSe2>l,有利于硫化物沉淀在成矿主阶段,随着硫化物的沉淀,fS2和fSe2相应增大,且fO2较高。高的fO2阻止了硒进入硫化物,而有利于硒化物的形成。 7系统研究了富硒硅岩建造的沉积环境和构造环境特征,认为渔塘坝硒矿床中富硒硅质岩主要形成于浅海滞留的盆地沉积环境,紫阳下寒武统硅质岩沉积环境属于深水滞留沉积环境;渔塘坝硒矿床主要形成于拉张的断陷盆地中,紫阳硒富集体则形成于拉张的裂谷环境。