183 resultados para liquid-gas phase transition
Resumo:
Gas phase adduct of endohedral rare-earth fullerenes Nd@C-S2 with the ion system of benzene-[Nd@C-S2-C6H6](+) was observed for the first time by ion-molecular reaction under chemical ionization condition. The possible reaction passageway and molecular structures of this gas phase adduct were discussed and a parallel "reversed umbrella" pi-pi interaction complex of the [C6H6](+) ion reacting with the neutral rare-earth fullerenes Nd@C-S2 was considered to be much reasonable. The experimental result indicated that endohedral rare-earth fullerenes has relatively active reactivity and aromatic properties similar towards benzene molecular ion in gas phase.
Resumo:
Ion/molecule reactions of C-60 with vinyl acetate under chemical ionization conditions have been studied here. Compared with C2H3O+ from acetone, C2H3O+ from vinyl acetate undergoes the reactions more easily, a new heterocycle between C-60 and the studied ion is formed The generation of two sigma-bonds and little angle tensile force of pentatomic ring make it more stable.
Resumo:
Gas-phase ion-molecule reactions of buckminsterfullerene (C-60) with the acetyl cation CH3-C-+=O (m/z 43) and formylmethyl cation (CH2)-C-+-CH=O (m/z 43, or oxiranyl cation), generated from the self-chemical ionization of acetone and vinyl acetate, respectively, were studied in the ion source of a mass spectrometer. Adduct cations [C60C2H3O](+) (m/z 763) and protonated C-60, [C60H](+) (m/z 721), were observed as the major products. AM1 semiempirical molecular orbital calculations on the possible structures, stabilities and charge locations of the isomers of the adducts [C60C2H3O](+) were carried out at the restricted Hartree-Fock level. The results indicated that the sigma-addition product [C-60-COCH3](+) is the most stable adduct for the reaction of C-60 with CH3-C-+=O rather than that resulting from the [2+2] cycloaddition. The [2+3] cycloadduct and the sigma-adduct [C60CH2CHO](+) might be the most possible coexisting products for the reactions of C-60 with (CH2)-C-+-CH=O or oxiranyl cation. Other [C60C2H3O](+) isomers are also discussed. (C) 1997 by John Wiley & Sons, Ltd.
Resumo:
The DCI MS of C-60 with the reactions of gaseous cyclohexane and cyclohexene have been studied. Several kinds reactions of C-60 have been observed. The results show that the gasphase C-60 has very active chemical properties. The adduct ions of [C60C4H7](+) and [C60C5H7](+) may be formed by [2+4] cycloaddition where one of double bonds of C-60 acted as a dienophilic unit.
Resumo:
Gas phase ion-molecular reactions of C-60 with the ion system of CS2 have been studied in the ion source of mass spectrometer. It was found for the first time that the sulfuric derivative of C-60-C60S+ was the main ions in the ion source, they did not react with C-60 to form adduct ions due to their highly saturated structures. According to the dynamic analysis, the product ion came from the reaction of C-60 with the fragment ion S+. The adduct ion may have the structure of epsulfide that is advantageous in energy.
Resumo:
In chemical ionization mass spectrometry (CIMS) gas phase C-60(+) or C-60 can react with fragment ions from three chloromethane and four multichloroethane molecular ions via ion-molecule reactions. A dozen of gas-phase adduct ions of C-60 are observed, and most of them contain chlorine atoms. The results of the comparison and analysis show that the relative intensities of adductions are not directly proportional to the corresponding fragment ions in the MS of reagents,which implies that some fragment ions containing radicals are more reactive with C-60(+) or C-60. This indicates that the alkene-like C-60(+) or C-60 can act as a radical sponge in addition reactions.
Resumo:
Based on Jeziorny theory, the kinetics of phase transition of poly(ester-imide) has been determined under non-isothermal condition by using differential scanning calorimetry (DSC). Avrami exponent n, kinetic parameters G(c) and rate constant Z(c) were derived and discussed.
Resumo:
Gas phase reactions of C-60 and C-70 with the ion system of acetone under chemical ionization conditions have been studied. C-60 and C-70 can react with acetyl and oxonium ions, which come from self-chemical ionization of acetone, to form adduct ions. In addition, C-60 and C-70 can accept protons to produce protonated ions. C-70 is more active in the above reactions than C-60 because of its stronger gas-phase basicity. A sigma-bond between C-60 and an acyl carbon atom can be formed to produce stable acetylated C-60 ions. The above results may be relevant to the acetylation reactions of C-60 in the condensed phase.
Resumo:
Gas-phase ion-molecular reactions of C-60 and C-70 with the ion system of acetone have been studied in this paper. The ions of protoned and acetylized C-60 and C-70 were formed by the reactions of C-60 and C-70 with some ions which existed in the ion system when mass spectrometer worked on chemical ionization conditions. The reactivity of C-70 is greater than that of C-60. Results of quantum chemical calculation for the adduct ions showed a sigma bond between the acyl carbon atom and C-60 may be Formed. These results will provide some valuable informations on the condense-phase acetylization of C-60.
Resumo:
The solid-solid phase transition of [n-C11H23NH3]2ZnCl4 Complex have been studied by Raman spectroscopy. The results show that the occurence of the structural phase transitions mainly related to the change of packing structure and molecular conformation o
Resumo:
A radical aromatic substitution resulting in biphenylcarboxylic acid is inferred for the decomposition of benzoyl peroxide from the chemical ionization and collision-induced dissociation mass spectra. The thermolysis of benzoyl peroxide gives rise to a benzoyloxy radical, which undergoes rapid decarboxylation and hydrogen abstraction leading to phenyl radical and benzoic acid, respectively. Attack of the resulting phenyl radical on the benzoic acid results in bipbenylcarboxylic acid. On the other hand, the phenyl radical abstracts a hydrogen atom to yield benzene, which is then subjected to the attack of a benzoyloxy radical, affording phenyl benzoate. This substitution reaction rather than the recombination of benzoyloxy and phenyl radicals is found to be responsible for the formation of phenyl benzoate under the present conditions.
Resumo:
The solid-solid phase transitions in the perovskite-type layer compound [n- C16H33NH3]2CoCl4 have been studied by infrared spectroscopy. A new phase transition at 340 K was found by comparison with differential scanning calorimetry results. A temperature dependence study of the infrared spectra provides evidence of the occurrence of structural phase transitions related to the dynamics of the alkylammonium ions and hydrogen bonds. The main transition at 374 K corresponds to the conformational order-disorder change in the chain, which probably couples with reorientational motions of the NH3 polar heads. GTG or GTG' defects appear in the high temperature disordered phase.
Resumo:
The unimolecular Charge separation reactions of the doubly charged ions [C6H4Cl2]2+, [C6H3Cl]2+ produced in the ion source by electron impact from o-, m-, and p-dichloro benzene have been studied using mass analysed ion kinetic energy spectrometry. The values of kinetic energy releases (T) can be calculated from the energy dispersion of product ions. As T essentially reflects the release of coulombic energy, which can be used to calculate the approximate distances R between the two charges immediately before decomposition of the ions. From these data, some structural information about transiton states could be provided. The ECID and CID processes of above doubly charged ions, have also been studied. We found that the CID reactions of (C6H4Cl2)2+ could be used to distinguish three dichloro benzene isomers.