115 resultados para ligands
Resumo:
A series of titanium and zirconium complexes based on aminoiminophosphorane ligands [Ph2P(Nt-Bu)(NR)](2)MCl2 (4, M = Ti, R = Ph; 5, M = Zr, R = Ph; 6, M = Ti, R = SiMe3; 7, M = Zr, R = SiMe3) have been synthesized by the reaction of the ligands with TiCl4 and ZrCl4. The structure of complex 4 has been determined by X-ray crystallography. The observed very weak interaction between Ti and P suggests partial pi-electron delocalization through both Ti and P. The complexes 4-7 are inactive for ethylene polymerization in the presence of modified methylaluminoxane (MMAO) or i-Bu3Al-Ph3CB(C6F5)(4) under atmospheric pressure, and is probably the result of low monomer ethylene concentration and steric congestion around the central metal.
Resumo:
The synthesis and electrochemical and photophysical study of a series of bis-cyclometalated iridium(III) complexes based on quinoline ligands have been carried out. These complexes are found to emit red-orange to deep red phosphorescence with high quantum yield and short lifetime. The red organic light-emitting diodes (OLEDs) with the external quantum efficiency up to 11.3% were demonstrated. Slow decay of efficiency with increasing current density was observed. These indicate that quinoline-based iridium complexes are promising candidates for efficient red emitters.
Resumo:
Three bidentate ligands, 4-phenyl-2-(2-pyridyl)-quinoline (ppq), 6-(carbazol-9-yl)-4-phenyl-2-(2-pyridyl)-quinoline (cpq) and 6-diphenylamino-4-phenyl-2-(2-pyridyl)-quinoline (dpq) and their zinc(II) complexes, have been designed and synthesized. The crystal structure of [Zn(ppq)(2)Cl]PF6 shows that the central zinc atom is coordinated with one chloride and four nitrogen atoms from two ligands. The introduction of an electron-donating substituent such as carbazole or an aromatic amine group at the 6-position of the quinoline moiety can generate colored tunable Zn complexes, and the photoluminescence (PL) wavelength was modulated from 418 nm for [Zn(ppq)(2)Cl]PF6 to 591 nm for [Zn(cpq)(2)Cl]PF6 and 638 nm for [Zn(dpq)(2)Cl]PF6 in CH2Cl2 solution. The electroluminescence spectrum of [Zn(dpq)(2)Cl]PF6 exhibits pure red light emission with the Commission Internationale de L'Eclairage (CIE) coordinates (0.63, 0.36) and a maximum at 648 nm.
Resumo:
The structure of the title compound, [Cu2Cl2(C12H10N2)](n), contains infinite CuCl staircase-like chains, which lie about inversion centres. The trans-1,2-di-4-pyrid-ylethyl-ene mol-ecules also lie about inversion centres and connect the CuCl chains through Cu-N coordination bonds into a two-dimensional organic-inorganic hybrid network. The planar sheets are stacked along the c axis and associated through weak C-H center dot center dot center dot Cl inter-actions. The results show a reliable structural motif with controllable separation of the CuCl chains by variation of the length of the ligand.
Resumo:
Three new cyclometalated iridium(III) complexes based on ligands of diphenylquinoline with fluorinated substituents were prepared, and characterized by elemental analysis (EA), H-1 NMR, and mass spectroscopy (MS). The photophysical and electrophosphorescent properties of the complexes were briefly discussed.
Resumo:
New neutral nickel(II) complexes bearing nonsymmetric bidentate pyrrole-imine chelate ligands (4a-d), [2-(ArNCH)C4H3N]Ni(PPh3)Ph [Ar=2,6-diisopropylphenyl (a), 2-methyl-6-isopropylphenyl (b), 2,6-diethylphenyl (c), 2-tert-butylphenyl (d)], have been prepared in good yields from the sodium salts of the corresponding ligands and trans-Ni(PPh3)(2)(Ph)Cl, and the structure of complex 4a has been confirmed by X-ray crystallographic analysis. These neutral Ni(II) complexes were investigated as catalysts for the vinylic polymerization of norbornene. Using modified methylaluminoxane (MMAO) as a cocatalyst, these complexes display very high activities and produce great mass polymers. Catalyst activity of up to 4.2 x 10(7) g (mol Ni h)(-1) and the viscosity-average molecular weight of polymer of up to 9.2 x 10(5) g mol(-1) were observed. Catalyst activity, polymer yield, and polymer molecular weight can be controlled over a wide range by the variation of reaction parameters such as Al-Ni ratio, norbornene-catalyst ratio, monomer concentration, polymerization reaction temperature and time.
Resumo:
Reactions of anhydrous LnCl(3) (Ln = Nd, Gd, Dy, Er, Yb) with 2 equiv of LiCp' in THF afford the lanthanocene complexes Of CP'(2)Ln(mu-Cl)(2)Li(THF)(2) (CP' = eta(5)-t-BuC5H4, Ln = Nd (1), Gd (2), Dy (3), Er (4), Yb (5); Cp'= 1,3-eta(5)-t-Bu2C5H3, Ln = Nd (6), Gd (7), Dy (8), Er (9), Yb (10)). The molecular structures of 7 and 8 were characterized by X-ray crystallographic analysis. In these complexes, two Cp' ring centroids and two it-bridging chloride atoms around the lanthanide atoms form a distorted tetrahedron. The insertion of elemental chalcogen E (E = S, Se) into Li-C bonds of dilithium o-carborane in THF solution afforded dimers of dilithium. dichalcogenolate carboranes, [(THF)(3)LiE2C2B10H10Li(THF)](2) (E = S (12a), Se (12b)), which were confirmed by a crystal structure analysis. Reactions Of Cp'(2)Ln(mu-Cl)(2)Li(THF)(2) (1-10) with 12a or 12b gave dinuclear complexes of the formula [Li(THF)(4)](2)[Cp'(2)LnE(2)C(2)B(10)H(10)](2) (Cp'= eta(5)-t-BuC5H4, E = S, Ln = Nd (13a), Gd (14a), Dy (15a), Er (16a), Yb (17a); E = Se, Ln = Nd (13b), Gd (14b), Dy (15b), Er (16b), Yb (17b); Cp'= 1,3-eta(5)-t-Bu2C5H3 E = S, Ln = Nd (18a), Gd (19a), Dy (20a), Er (21a), Yb (22a); E = Se, Ln = Nd (18b), Gd (19b), Dy (20b), Er (21b), Yb (22b)). According to the X-ray structure analyses, the dianions of 13a and 13b contain two o-carborane dichalcogenolate bridges, and each CP'2Ln fragment is attached to one terminal and two bridging chalcogen ligands. The central Ln(2)E(2) four-membered ring is not planar, and the direct metal-metal interaction is absent.
Resumo:
Reactions of [ Cp(2)Ln(mu-Cl)](2) (Cp = eta(5)-C5H5, Ln = Nd, Yb, Dy, Gd, Er) with an equivalent of [ (THF)(3)LiE2C2B10H10Li. (TT-IF) (THF)](2) (E = S, Se) in THF afforded the dinuclear sandwich complexes of formula[Cp(2)LnE(2)C(2)B(10)H(10)](2)[Li(THF)(4)](2) [E = S, Ln = Nd (1a), Yb (2a), Dy (3a), Gd (4a), Er (5a); E = Se, Ln = Nd (1b), Yb (2b), Dy (3b), Gd (4b), Er (5b)]. The molecular structures of complexes la, 2a and 2b were determined by the single crystal X-ray structure analyses. Two lanthanide atoms are connected by a pair chalcogen (eta(1), eta(2)-E2C2B10H10) bridging ligands and the central Ln(2)E(2) four membered ring is not planar.
Resumo:
Reactions of the Rh hydrido complex [Rh(H)(2)(PPh3)(2)(EtOH)(2)]ClO4 (1) With nitrogen ligands such as 2-(4-thiazolyl)benzimidazole (tbz). pyridazine (pdz), imidazole (im) and pyrimidine (pmd) in CH,Cl, afforded Various mononuclear Rh hydrido complexes, [Rh(H)(2)(PPh3)(2)(tbz)]CIO4 (2), [Rh(H)(2)(PPh3)(2)(pdZ)(2)]ClO(4)(.)2CH(2)Cl(2) (3). [Rh(H)Cl(PPh3)(2)(pdz)(2)](ClO4CH2Cl2)-C-. (4). [Rh(H)(2)(PPh3)(2)(im)(2)]ClO(4)(.)2CH(2)Cl(2) (5). [Rh(H)Cl(PPh3)(2)(im)(2)](ClO4CH2Cl2)-C-. (6). [Rh(H)(2)(PPh3)(2)(pmd)(2)](ClO4CH2Cl2)-C-. (7) and the Rh non-hydrido complex [RhCl2(pmd)(4)]ClO4 (8). The Rh complexes 2. 3, 5 and 6 were crystallographically characterized. The formation process was monitored by H-1 NMR and UV-Vis spectra. In all the Rh hydrido complexes, the Rh atom is coordinated by two PPh3. ligands in trans-positions and two nitrogen ligands in the cis-positions. The remaining sites Lire occupied by one or two hydride atoms to form a saturated 18-electron framework in a slightly distorted octahedral geometry. For complex 2 an appreciable inter-molecular pi interaction is observed between planes of tbz and PPh3 ligands, while an intra-molecular hydrogen bonding interaction between C-H and Cl atoms is found in complex 6.
Resumo:
Three prototypes of dinuclear complexes were obtained from the reactions of dilithium 1,2-dicarbacloso-dodecaborane-1,2-dichalcogenolates, (B10H10)C-2-(ELi)(2) (E = S, Se), with CpFe(CO)(2)Cl (1), CpRu(PPh3)(2)Cl (2), or [Cp*RuCl2](2) (3), respectively, and their structures have been determined by X-ray crystallography.
Resumo:
Reactions of Rh and Ir hydrido complexes. [Rh(H)(2)(PPh3)(2)(solv)(EtOH)]ClO4 (solv = Me2CO, 1a; EtOH, 1b) and [Ir(H)(2)(PPh3)(2)(Me2CO)(2)]BF4 (2), with various N,N'-donor bridging ligands, such as pyrazine (pyz), 4,4'-trimethylenedipyridine (tmdp) and di(4-pyridyl) disulfide (dpds), in some solvents were examined, and their reaction products were characterized by X-ray crystal structure analysis. IR, H-1 NMR and UV-vis spectra. Rh hydrido complexes, la or 1b, formed a dinuclear Rh complex, [Rh-2(PPh3)(2) {(eta(6)-C6H5PPh2}(2)] (ClO4)(2).6CH(2)Cl(2) (3.6CH(2)Cl(2)), in dichloromethane with a reductive elimination of hydrogen. The reactions of 1a or 1b with the pyz ligand in dichloromethane and tetrahydrofuran gave triangular Rh-3 complexes, [Rh-3(PPh3)(6)(pyz)(3)](ClO4)(3).CH2Cl2 (5.CH2Cl2) and [Rh-3(PPh3)(6)(pyz)(3)](ClO4)(3).EtOH (5.EtOH), respectively, in contrast to the formation of a dinuclear Rh hydrido complex, [Rh-2(H)(4)(PPh3)(4)(Me2CO)(2)(pyz)](ClO4)(2).EtOH A-EtOH). in acetone. The reactions of la or 1b with the tmdp ligand in dichloromethane and 3-methyl-2-butanone also afforded dinuclear Rh complexes, [Rh-2(PPh3)(4)(tmdp)(2)](ClO4)(2) (6) and [Rh-2(PPh3)(4)(tmdp)(2)](ClO4)(2).4MeCOCHMe(2) (6.4MeCOCHMe(2)), respectively. On the other hand, Ir hydrido complex 2 reacted with pyz and dpds ligands in dichloromethane to afford dinuclear Ir complexes, [Ir-2(H)(4)(PPh3)(4)(Me2CO)(2)(pyz)]- (BF4)(2).3CH(2)Cl(2) (7.3CH(2)Cl(2)) and [Ir-2(H)(4)(PPh3)(4)(dpds)(2)](BF4)(2).3CH(2)Cl(2).H2O (8.3CH(2)Cl(2).H2O), respectively, without any reductive elimination of hydrogen. Based on structural studies in solution and in the solid state. it was demonstrated that various Rh and Ir complexes were selectively produced depending on the choice of solvents and N,N'-donor bridging ligands.
Resumo:
Gold nanoparticles with size 3-10 nm (diameter) were prepared by the reduction of HAuCl4 in a CTAB/octane + 1-butanol/H2O reverse micelle system using NaBH4 as the reducing agent. The as-formed gold nanoparticle colloid was characterized by UV/vis absorption spectrum and transmission electron microscopy(TEM). Various capping ligands, such as alkylthiols with different chain length and shape, trioctylphosphine (TOP), and pyridine are used to passivate the gold nanoparticles for the purpose of self-organization into superstructures. It is shown that the ligands have a great influence on the self-organization of gold nanoparticles into superlattices, and dodecanethiol C12H25SH is confirmed to be the best ligand for the self-organization. Self-organization of C12H25SH-capped gold nanoparticles into 1D, 2D and 3D superlattices has been observed on the carbon-coated copper grid by TEM without using any selective precipitation process.
Resumo:
Three bridging ligands (L) and their binuclear phenanthroline ruthenium(II) complexes {[Ru(1,10-phenanthroline)(2)](2)(L)}(PF6)(4) were synthesized and characterized by IR, H-1 NMR, and elemental analysis, where L are 1,8-adipoylamido-bis(1,10-phenanthroline-5-yl) (L-1), 1,11-azelaoylamidobis(1, 10-phenanthroline-5-yl) (L-2), and p-phthaloylamido-bis(1,10-phenanthroline-5-yl) (L-3).