227 resultados para hybrid heuristic
Resumo:
The hybrid integrated photonic switch and not logic gate based on the integration of a GaAs VCSEL (Vertical Cavity Surface Emitting Lasers) and a MISS (Metal-Insulator-Semiconductor Switches) device are reported. The GaAs VCSEL is fabricated by selective etching and selective oxidation. The Ultra-Thin semi-Insulating layer (UTI) of the GaAs MISS is formed by using oxidation of A1As that is grown by MBE. The accurate control of UTI and the processing compatibility between VCSEL and MISS are solved by this procedure. Ifa VCSEL is connected in series with a MISS, the integrated device can be used as a photonic switch, or a light amplifier. A low switching power (10 mu W) and a good on-off ratio (17 dB contrast) have been achieved. If they are connected in parallel, they perform a photonic NOT gate operation.
Resumo:
Hybrid integration of GaAs/AlGaAs multiple quantum well self electro-optic effect device (SEED) arrays are demonstrated flip-chip bonded directly onto 1 mu m silicon CMOS circuits. The GaAs/AlGaAs MQW devices are designed for 850 nm operation. Some devices are used as input light detectors and others serve as output light modulators. The measurement results under applied biases show good optoelectronic characteristics of elements in SEED arrays. Nearly the same reflection spectrum is obtained for the different devices at an array and the contrast ratio is more than 1.2:1 after flip-chip bonding and packaging. The transimpedance receiver-transmitter circuit can be operated at a frequency of 300 MHz.
Resumo:
We report on the material growth and fabrication of high-performance 980-nm strained quantum-well lasers employing a hybrid material system consisting of an Al-free InGaAs-InGaAsP active region and AlGaAs cladding layers. The use of AlGaAs cladding instead of InGaP provides potential advantages in flexibility of laser design, simple epitaxial growth, and improvement of surface morphology and laser performance. The as-grown InGaAs-InGaAsP(1.6 eV)-AlGaAs(1.95 eV) lasers achieve a low threshold current density of 150 A/cm(2) (at a cavity length of 1500 mu m), internal quantum efficiency of similar to 95%, and low internal loss of 1.8 cm(-1). Both broad-area and ridge-waveguide laser devices are fabricated. For 100-mu m-wide stripe lasers with a cavity length of 800 Irm, a slope efficiency of 1.05 W/A and a characteristic temperature coefficient (T-0) of 230 K are achieved. The lifetime test demonstrates a reliable performance. The comparison with our fabricated InGaAs-InGaAsP(1.6 eV)-AlGaAs(1.87 eV) lasers and Al-free InGaAs-InGaAsP (1.6 eV)-InGaP lasers are also given and discussed. The selective etching between AlGaAs and InGaAsP is successfully used for the formation of a ridge-waveguide structure. For 4-mu m-wide ridge-waveguide laser devices, a maximum output power of 350 mW is achieved. The fundamental mode output power can be up to 190 mW with a slope efficiency as high as 0.94 W/A.
Resumo:
We introduce a double source electron beam evaporation (DSEBET) technique in this paper. The refractive index coatings were fabricated on K9 glass substrate by adjusting the evaporation rates of two independent sources. The coatings, which were described by atomic force microscopy (AFM), show good compactness and homogeneity. The antireflective (AR) coatings were fabricated on Superluminescent Diodes (SLD) by DSEBET. The hybrid AR coatings on the facets of SLD were prepared in evaporation rates of 0.22nm/s and 0.75nm/s for silicon and silicon dioxide, respectively. The results of AFM and spectral performance of coated SLD show that DSEBET has a promising future in preparing the coatings on optoelectronic devices.
Resumo:
Tunneling magnetoresistance (TMR) in Ga(0.9)2Mn(0.08)As/Al-O/Co40Fe40B20 trilayer hybrid structure as a function of temperature from 10 to 50 K with magnetic field vertical bar H vertical bar <= 2000 Oe has been studied. TMR ratio of 1.6% at low fields at 10 K was achieved with the applied current of 1 mu A. The behavior of junction resistance was well explained by the tunneling resistance across the barrier. Strong bias dependences of magnetoresistance and junction resistance were presented. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3068418]
Resumo:
A new-style silica planar lightwave circuit (PLC) hybrid integrated triplexer, which can demultiplex 1490-nm download data and 1550-nm download analog signals, as well as transmit 1310-nm upload data, is presented. It combines SiO2 arrayed waveguide gratings (AWGs) with integrated photodetectors (PDs) and a high performance laser diode (LD). The SiO2 AWGs realize the three-wavelength coarse wavelength-division multiplexing (CWDM). The crosstalk is less than 40 dB between the 1490- and 1550-nm channels, and less than 45 dB between 1310- and 1490- or 1550-nm channels. For the static performances of the integrated triplexer, its upload output power is 0.4 mW, and the download output photo-generated current is 76 A. In the small-signal measurement, the upstream 3-dB bandwidth of the triplexer is 4 GHz, while the downstream 3-dB bandwidths of both the analog and digital sections reach 1.9 GHz.
Resumo:
SnS/SnO heterojunction structured nanocrystals with zigzag rod-like connected morphology were prepared by using a simple two-step method. Bulk heterojunction solar cells were fabricated using the SnS/SnO nanocrystals blended with poly(2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylene vinylene) (MDMO-PPV) as the active layer. Compared with solar cells using SnS nanoparticles hybridized with MDMO-PPV as the active layer, the SnS/SnO devices showed better performance, with a power conversion efficiency higher by about one order in magnitude.
Resumo:
A series of novel numerical methods for the exponential models of growth are proposed. Based on these methods, hybrid predictor-corrector methods are constructed. The hybrid numerical methods can increase the accuracy and the computing speed obviously, as well as enlarge the stability domain greatly. (c) 2005 Published by Elsevier Inc.
Resumo:
通过对Hybrid-Maize玉米高产模型进行田间验证,应用该模型对黄土旱塬春玉米生产潜力进行初步估算。结果表明,Hybrid-Maize模型在黄土旱塬表现出较好模拟效果,总生物量、秸秆生物量和籽粒产量模拟值与实测值间具有极显著线性相关性,其决定系数分别为0.9469、0.8164和0.9650,回归系数分别为1.0198、0.9787和1.1844,接近于1。黄土旱塬区多年光温生产潜力和气候生产潜力因品种不同有所差别,对多年平均光温籽粒和总生物量生产潜力,紧凑型玉米品种分别为13.25和22.45t/hm2,平展型玉米品种分别为12.32和20.62t/hm2,年际变化小;对多年平均气候籽粒和总生物量生产潜力,紧凑型玉米品种分别为11.97和19.94t/hm2,平展型玉米品种分别为11.37和18.63t/hm2,年际波动大。在黄土旱塬区,玉米产量潜力挖掘的主要途径应集中在提高密度和水分限制条件下,Hybrid-Maize玉米模型在指导玉米高产栽培上具有较好应用。