95 resultados para Z-scan technique
Generation of 1.5–12ns width-tunable 532nm pulses by adopting laser-induced plasma shutter technique
Resumo:
本文提出了一种自动辨识条纹顺序的方法。它使用简化的Otsu算法获得阈值,然后在45°的范围内对干涉条纹的位置进行搜索,最后由区域搜索技术辨识不同的条纹。实验结果表明,本方法能可靠地获得近似45°到90°的干涉条纹顺序。
Resumo:
YAlO3 single crystal doped with Ce3+ at concentration 1% was grown by the temperature gradient technique. The as-grown crystal was pink. After H-2 annealing or air annealing at 1400degreesC for 20 h, the crystal was turned into colorless. We concluded there were two kinds of color centers in the as-grown crystal. One is F+ center attributed to absorption band peaking at about 530 nm, the other is O- center attributed to absorption band peaking at about 390 nm. This color centers model can be applied in explaining the experiment phenomena including the color changes, the absorption spectra changes, and the light yield changes of Ce:YAP crystals before and after annealing. (C) 2004 American Institute of Physics.
Resumo:
The CaF2 single crystals with diameters up to 200 mm were successfully grown by modified temperature gradient technique (TGT), which are suitable for application as optical elements in the ultraviolet range. The optimizations of various growth parameters were systematically studied. Properties of as-grown CaF2 crystals were characterized by the nature of inclusions, dislocations, crystallinity, and impurities contents. The results showed that the dislocations and multinucleation were mostly constrained in the conical part of the crystals with the cylindrical parts having the best crystalline quality and lowest impurity contents. The high optical quality of TGT-grown CaF2 single crystals was also confirmed to have excellent optical transmission in 190-2500 nm and refractive index homogeneity. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Low-threshold and highly efficient continuous-wave laser performance of Yb:Y3Al5O12 (Yb:YAG) single crystal grown by a temperature gradient technique (TGT) was achieved at room temperature. The laser can be operated at 1030 and 1049 nm by varying the transmission of the output coupler. Slope efficiencies of 57% and 68% at 1049 and 1030 nm, respectively, were achieved for 10 at. % Yb:YAG sample in continuous-wave laser-diode pumping. The effect of pump power on the laser emission spectrum of both wavelengths is addressed. The near-diffraction-limited beam quality for different laser cavities was achieved. The excellent laser performance indicates that TGT-grown Yb:YAG crystals have very good optical quality and can be potentially used in high-power solid-state lasers.
Resumo:
Defects in as-grown U3+ : CaF2 crystals grown with or without PbF2 as an oxygen scavenger were studied using Raman spectra, thermoluminescence glow curves, and additional absorption (AA) spectra induced by heating and gamma-irradiation. The effects of heating and irradiation on as-grown U3+: CaF2 crystals are similar, accompanied by the elimination of H-type centers and production of F-type centers. U3+ is demonstrated to act as an electron donor in the CaF2 lattice, which is oxidized to the tetravalent form by thermal activation or gamma-irradiation. In the absence of PbF(2)as an oxygen scavenger, the as-grown U3+:CaF2 crystals contain many more lattice defects in terms of both quantity and type, due to the presence of O2- impurities. Some of these defects can recombine with each other in the process of heating and gamma-irradiation. (c) 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Five absorption hands, at 227, 300 340, 370 and 457nm, were observed in the optical absorption spectrum of Ce:Y3Al5O12 (Ce:YAG) crystals grown by the temperature gradient technique (TGT). The absorption bands at 227, 340, and 457 nm were identified Lis belonging to the Ce3+ -ion in the YAG crystal. A near UV optical emission band at 398nm was observed. with an excitation spectrum containing two bands, at 235 and 370nm. No fluorescence was detected under 300 nm excitation. The pair of absorption bands at 235 and 370 nm and the absorption band at 300 nm were attributed to the F- and F+-type color centers, respectively. The color centers model was also applied to explain the spectral changes in the Ce:YAG (TGT) crystal, including the reduction in the Ce 31 -ion absorption intensity, after annealing in an oxidizing atmosphere (air). (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
We report on the realization of ZnO homojunction light-emitting diodes (LEDs) fabricated by metalorganic chemical vapor deposition on (0001) ZnO bulk substrate. The p-type ZnO epilayer was formed by nitrogen incorporation using N2O gas as oxidizing and doping sources. Distinct electroluminescence (EL) emissions in the blue and yellow regions were observed at room temperature by the naked eye under forward bias. The EL peak energy coincided with the photoluminescence peak energy of the ZnO epilayer, suggesting that the EL emissions emerge from the ZnO epilayer. In addition, the current-voltage and light output-voltage characteristics of ZnO homojunction LEDs have also been studied. (c) 2006 American Institute of Physics.
Resumo:
Large-sized (similar to 2 inch, 50.8 mm) gamma-UA102 single crystal has been grown by conventional Czochralski (Cz) method, but the crystal ha's a milky, dendriform center. The samples taken from transparent and milky parts were ground and examined by X-ray diffraction. All diffraction peaks could be indexed in gamma-LiAlO2. The crystal quality was characterized by X-ray rocking curve. The full-width at half-maximum (FWHM) values are 116.9 and 132.0 arcsec for transparent and milky parts, respectively. The vapor transport equilibrium (VTE) technique was introduced to modify the crystal quality. After 1000 degrees C/48 h, 1100 degrees C/48 h, 1200 degrees C/48 h VTE processes, the FWHM values dropped to 44.2 and 55.2 arcsec for transparent and milky part, respectively. The optical transmission of transparent part was greatly enhanced from 85% to 90%, and transmission of milky part from 75% to 80% in the range of 190 similar to 1900 nm at room temperature. When the VTE temperature was raised to 1300 degrees C, the sample cracked and FWHM values of transparent and milky parts were increased to 55.2 and 80.9 arcsec, respectively. By combining Cz technique with VTE technique, large-sized and high quality gamma-LiAlO2 crystal can be obtained.
Resumo:
A finite-element model is employed to analysis the thermal environments in Temperature Gradient Technique (TGT) furnace during the growth of large-sized Nd:YAG crystal. The obtained results show that when the crucible is located at the lower position inside of the heater, a flatter solid-liquid interface is established, which makes it easier to obtain the core-free Nd:YAG crystal. Meanwhile, the lower crucible position can induce higher axial temperature gradient, which is beneficial to the release of latent heat. (c) 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Spectroscopic properties of Ce-doped yttrium orthoaluminate (Ce:YAlO3 or Ce:YAP) crystals grown by temperature gradient technique (TGT) were investigated, and the effects of the growth conditions on the properties were analyzed.. Methods of optical absorption (OA), photoluminescence (PL), photoluminescence decay (PLD), X-ray excited luminescence (XL) and cathodeluminescence (CL) were used in these investigations. The results showed that the absorption band peak at 202, 394 and 532 nm originated from F and F+ color center induced by the weak reducing growth atmosphere, green emission band near 500 ran derived from Ce3+ -Ce3+ pairs and band at 650 similar to 850 run from some unintentional impurity in crystals.
Resumo:
beta-Ga2O3: Cr single crystals were grown by floating zone technique. Absorption spectra and fluorescence spectra were measured at room temperature. The values of field splitting parameter Dq and Racah parameter B were obtained by the peak values of absorption spectra. The value 10Dq/B=23.14 manifests that in beta-Ga2O3 crystals Cr3+ ions are influenced by low energy crystal field. After high temperature annealing in air, the Cr3+ intrinsic emission was enhanced and the green luminescence disappeared. The strong and broad 691 nm emission was obtained at 420 nm excitation due to the electron transition occurred from T-4(2) to (4)A(2). The studies manifest that the beta-Ga2O3 crystals have the potential application for tunable laser.
Resumo:
The growth and fabrication of GaN/InGaN multiple quantum well (MQW) light emitting diodes ( LEDs) on ( 100) beta-Ga2O3 single crystal substrates by metal-organic chemical vapour deposition (MOCVD) technique are reported. x-ray diffraction (XRD) theta-2 theta. scan spectroscopy is carried out on the GaN buffer layer grown on a ( 100) beta-Ga2O3 substrate. The spectrum presents several sharp peaks corresponding to the ( 100) beta-Ga2O3 and ( 004) GaN. High-quality ( 0002) GaN material is obtained. The emission characteristics of the GaN/InGaN MQW LED are measurement. The first green LED on beta-Ga2O3 with vertical current injection is demonstrated.
Resumo:
In this work, alpha-Al2O3:C, a highly sensitive thermoluminescence dosimetry crystal, was grown by the EFG method in which a graphite heating unit and shield acted as the carbon source during the growth process. The optical, luminescent properties and dosimetric characteristics of the crystal were investigated. The as-grown crystal shows a single glow peak at 536 K, which is associated with Cr3+ ions. After annealing in H-2 at 1673 K for 80 h, the crystal shows a single glow peak at 460 K and a blue emission band at 415 nm. The thermoluminescent response of the annealed crystal shows linear-sublinear-saturation characteristics in the dose range from 5 x 10(-6) to 100 Gy.
Resumo:
In this work, an alpha-Al2O3:C crystal with highly sensitive thermoluminescence was directly grown by the temperature gradient technique (TGT) using Al2O3 and graphite powders as raw materials. The optical and luminescent properties and the dosimetric characteristics of the crystal were investigated. An as-grown alpha-Al2O3:C crystal shows a single glow peak at 462 K and a blue emission peak at 415 nm. The thermoluminescence (TL) response of the crystal shows a linear-sublinear-saturation characteristic. In the dose range from 5 x 10(-6) to 10Gy, the alpha-Al2O3:C crystal shows excellent linearity, and saturation was observed at about 30Gy. The sensitivity of the crystal decreases as the heating rate increases. (c) 2008 Elsevier B.V. All rights reserved.