110 resultados para Tyson, Ty
Resumo:
Capillary electrophoresis with amperometric detection is evaluated for the simultaneous determination of 2-aminothiazole (A), 2-amino-benzothiazole (AB), 2-mercaptobenzothiazole (AM). The cyclic voltammogram, hydrodynamic voltammogram, effect of pH, concentration of buffer and separation voltage on the separation and the detection were studied. The conditions were optimized as follows: 50 mM phosphate buffet; pH 6.0, 2s at 17.5 kV sample injection, separation at 17.5 kV, 1.2 V as detection potential. The method provided low detection limit as 0.5 mu M, 0.05 mu M and 0.01 mu M, wide linear range 2-200 mu M, 10-200 mu M and 0.025-100 mu M for A, AB, and AM, respectively. The variations in peak current and migration time for 15 consecutive injections of a standard containing 5 mu M each compound were 3.7, 2.1, and 3.9%, and 1.2, 0.8, and 1.2%, for A, AB and AM, respectively. This method was employed to analyze river water.
Resumo:
A capillary electrophoresis-amperometric detection system was developed for the determination of propranolol (PRO) at a 33 mu m carbon fiber microdisk electrode (CFE). The cyclic voltammogram, the hydrodynamic voltammograms and the effect of pH were studied. Under the optimum conditions: separation Voltage 15 kV; injection 3 s at 15 kV; 10 mM pH 7.5 phosphate buffer, 1.15 V (vs. Ag/AgCl) detection potential, the detection limit (LOD) for PRO was 0.05 mu M (S/N = 3). The response for PRO was linear over two orders of magnitude with a linear correlation coefficient of 0.994. The feasibility of this method was demonstrated by the detection of PRO in urine sample.
Resumo:
Capillary electrophoresis (CE) with end-column electrochemical detection (EC) of barbituric acid (BA) and 2-thiobarbituric acid (TA) has been described. Under optimum condition, BA and TA were separated satisfactorily, and a response of high sensitivity and stability was obtained at a detection potential of 1.25 V versus Ag/AgCl. Optimized end-column detection provides detection limit as low as 0.5 and 0.1 mu M for BA and TA, respectively. The calibration graph was linear over three orders of magnitude. The relative standard deviations (n = 10) of peak currents and migration times obtained for both BA and TA were 3.4, 3.7, and 1.7, 1.2%, respectively. The proposed method has been applied to analyze water sample with satisfactory results. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Determination of aesculin (AL) and aesculetin (AT) by capillary electrophoresis with end-column amperometric detection using a 33 mu m microdisk carbon fiber electrode is described. The HDVs, the effect of pH, buffer concentration, injection voltage, injection time and separation voltage on the peak current response (i(p)) of the analytes and the number of theoretical plates (N) were studied. The method has high sensitivity and good reproducibility. Under the optimum condition - 10 mM, pH 9.00 phosphate buffer, 4 s at 9 kV injection, separation at 15 kV and +1.0 V as the detection potential - low detection limits (S/N = 3) of 0.06 and 0.3 mu M were obtained for AL and AT, respectively. The calibration curve was linear over three orders of magnitude. The relative standard deviations (n = 15) of peak current and migration time were 3.9% and 4.6%, and 0.96% and 0.75% for 15 consecutive injections of 5 mu M AL and AT, respectively. The use of this method for the separation and detection of the two compounds present in the traditional Chinese medicine and human urine samples is also reported. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
The adsorbed kinetics, proton transportation in electrochemical redox process of 4-pyridyl hydroquinone (4PHQ) self-assembled monolayer (SAM) modified Pt electrode were studied by electrochemical quartz crystal microbalance (EQCM) in situ. It proved that the electrode was modified by a monolayer and underwent a rapid electron transfer. It was a slow adsorbed kinetic process. The ion transfer in the electrochemical redox at the SAM-modified electrode surface mainly involved into the hydrate hydrogen ion.
Resumo:
End-column amperometric detection of 6-mercaptopurine by capillary zone electrophoresis was described with high resolution and speed. The detection conditions were optimized and the electrochemical behavior was observed. Under the optimal conditions: detection potential of 1.2 V ( vs. Ag/AgCl), operating voltage of 15 kV, sample injection of 3 s at 15 kV and 10 mmol/l Na2HPO4 buffer, the detection limit for 6-MP was as low as 1 x 10(-7) mol/L and the linear range was from 5 x 10(-4) to 5 x 10(-6) mol/L with the relative coefficient of 0.995. The RSD of reproducibility for peak current and migration time was 2.5% and 1.2%, respectively. This method was utilized in assay real sample of human mine and bovine serum albumin containing 6-mercaptopurine.
Resumo:
Electrochemical detection of five species of aromatic amines at a carbon fiber microdisk electrode after separation by capillary electrophoresis is described. Under the optimum conditions, the detection limit for 3,4-dihydroxybenzylamine, N,N-dimethylaniline, p-phenylenediamine, p-aminophenol and aniline sulfate was 0.9, 0.03, 0.075, 1.2 and 0.15 mu M (S/N = 3), respectively. The linear response range was 5-1000, 0.1-500, 0.5-500, 5-500 and 1-200 mu M, respectively The effect of the electrode position and buffer pH on the detection was also studied. This method is very simple, sensitive and stable for the detection of these compounds.
Resumo:
A new electrochemical cell assembly with the combination of UV and amperometric detector (AD) based on their complementarity was described. A Nafion tubing junction was used to decouple the high voltage from the separation capillary in the rear of on-column UV detector. In this mode, the electroactive and inert compounds could be detected by UV and AD at the same time. Aromatic amines were determined with the UV and the end-column AD detection to evaluate the performances of the cell assembly. Such an improved electrochemical detector could match the capillary with different diameters. By simple adjustment of the screws, the positioning of the working electrode and the detection capillary was easily gained without microscope. It is also very easy to assemble and disassemble the working electrode when needed. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
The applications of the microelectrodes for capillary electrophoresis/electrochemical detection are reviewed. The attractive advantages of the microelectrode provide a wide scope for the developments in capillary electrophoresis with electrochemical detection.
Resumo:
A rapid and sensitive detection method for the determination of 5-fluorouracil(5-FU) in real samples such as human urine and bovine serum albumin (BSA) was described. A carbon fiber microdisk electrode was used to perform end-column amperometric detection in capillary zone electrophoresis. The detection limit was as low as 2.5x10(-7) M and the wider linear range for the concentration was between 5x10(-6) and 1x10(-4) M with a correlation coefficient of 0.995.
Resumo:
Cyclic voltammetry of Vitamin K-3 (V-K3) was measured with Pt disk electrode, platinum interdigitated array (Pt-IDA) and Au-IDA microelectrodes in single and dual modes. The effects of pH, scan rate and collector potential on the current of generator and collector were studied. The collection efficiency of V-K3 at IDA electrodes was measured. The linear ranges for current response as a function of V-K3 concentration were found to he 10 mu M-1 mM (i(g)) and 1 mu M - 1 mM (i(c)) for the generator and collector of the Pt-IDA electrode, respectively. The effects of waiting time, potential difference and pulse electrolysis time in differential pulse voltammetry (DPV) on the peak current of V-K3 were studied to get the optimal condition at 0.1 M Na2HPO4, pH 11.50 and 11.0 for Au-IDA and Pt-IDA, respectively.
Resumo:
Capillary electrophoresis (CE)/electrochemical detection (EC) for the simultaneous detection of hydrazine, methylhydrazine, and isoniazid has been developed with a 4-pyridyl hydroquinone self-assembled microdisk platinum electrode. Such an electrode has very high catalytic ability for hydrazines and they could be detected even at 0.0 V. The responses for hydrazine, methylhydrazine, and isoniazid are linear over 3 orders of detected concentration and of magnitude of 0.2-400 mu M, 0.2-400 mu M, 0.5 mu M-2 mM, with correlation coefficients of 0.9998, 0.9991, and 0.9982, respectively. And they could be detected to levels of 0.1, 0.1 and 0.2 mu M, respectively. This modified electrode was found to be very stable and reproducible when continuously used as detector for capillary electrophoresis for period of at least 4 weeks with no apparent loss of response. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Capillary electrophoresis (CE) with end-column electrochemical detection (EC) of sulfadiazine (SDZ) and sulfamethoxazole (SMZ) is described. Under the optimum conditions, SDZ and SMZ were separated satisfactorily, and a highly sensitive and stable response was obtained at a potential of 1.1 V versus Ag/AgCl. Optimized end-column detection provides detection limits as low as 0.1 mu M for both compounds, which corresponds to 0.024 and 0.021 fmol with peak efficiencies of 394000 and 335000 theoretical plates for SDZ arid SMZ, respectively. The calibration graph was linear over three orders of magnitude. The relative standard deviations (n = 12) of peak currents and migration times were 2.3 and 2.7%, and 0.8 and 1.3%, respectively, for the two compounds. The proposed method was applied to the analysis of tablets and human urine samples with satisfactory results.
Resumo:
Polymerization of styrene with the neodymium phosphonate Nd(P-507)/H2O/Al(i-Bu)(3) catalytic system has been examined. The polymer obtained was separated into a soluble and an insoluble fraction by 2-butanone extraction. C-13-NMR spectra indicate that the insoluble fraction is isotactic polystyrene and the soluble one is syndiotactic-rich atactic polystyrene. The polymerization features are described and discussed. The optimum conditions for the polymerization are as follows: [Nd] = (3.5-5.0) x 10(-2) mol/L; [styrene] = 5 mol/L; [Al]/[Nd] = 6-8 mol/mol; [H2O]/[Al] = 0.05-0.08 mol/mol; polymerization temperature around 70 degrees C. The percent yield of isotactic polystyrene (TY) is markedly affected by catalyst aging temperature. With increase of the aging temperature from 40 to 70 degrees C, TY increases from 9% to 48%. Using AlEt3 and Al(i-Bu)(2)H instead of Al(i-Bu)(3) decreases the yield of isotactic polystyrene. Different neodymium compounds give the following activity order: Nd(P-507)(3) > Nd(P-204)(3) > Nd(OPri)(3) > NdCl3 + C2HF5OH > Nd(naph)(3). With Nd(naph)(3) as catalyst, only atactic polystyrene is obtained. (C) 1998 John Wiley & Sons, Inc.
Resumo:
4-Pyridyl hydroquinone on a platinum electrode adsorbs through the pyridine nitrogen forming stable self-assembled layers. The electrocatalytical oxidation of hydrazines was performed by the modified electrode. The overpotential of hydrazines was decreased markedly at the self-assembled monolayer (SAM) electrode. The mechanism of hydrazine oxidation was also investigated. Amperometric detection of hydrazine under zero potential (vs Ag\AgCI\sat. KCl) was exhibited by the SAM electrode used as an electrochemical detector in a flow system. (C) 1998 Elsevier Science S.A. All rights reserved.