246 resultados para Transparent conducting oxides


Relevância:

20.00% 20.00%

Publicador:

Resumo:

X-ray photoelectron spectroscopy (XPS) combined with Auger electron spectroscopy (AES) have been used to study the oxides from a Si0.5Ge0.5 alloy grown by molecular beam epitaxy (MBE). The oxidation was performed at 1000 degrees C wet atmosphere. The oxide consists of two layers: a mixed (Si,Ge)O-x layer near the surface and a pure SiOx layer underneath. Ge is rejected from the pure SiOx and piles up at the SiOx/SiGe interface. XPS analysis demonstrates that the chemical shifts of Si 2p and Ge 3d in the oxidized Si0.5Ge0.5 are significantly larger than those in SiO2 and GeO2 formed from pure Si and Ge crystals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to improve the total-dose radiation hardness of the buried oxides(BOX) in the structure of separa tion-by-implanted-oxygen(SIMOX) silicon-on-insulator(SOI), nitrogen ions are implanted into the buried oxides with two different doses,2 × 1015 and 3 × 1015 cm-2 , respectively. The experimental results show that the radiation hardness of the buried oxides is very sensitive to the doses of nitrogen implantation for a lower dose of irradiation with a Co-60 source. Despite the small difference between the doses of nitrogen implantation, the nitrogen-implanted 2 × 1015 cm-2 BOX has a much higher hardness than the control sample (i. e. the buried oxide without receiving nitrogen implantation) for a total-dose irradiation of 5 × 104rad(Si), whereas the nitrogen-implanted 3 × 1015 cm-2 BOX has a lower hardness than the control sample. However,this sensitivity of radiation hardness to the doses of nitrogen implantation reduces with the increasing total-dose of irradiation (from 5 × 104 to 5 × 105 rad (Si)). The radiation hardness of BOX is characterized by MOS high-frequency (HF) capacitance-voltage (C-V) technique after the top silicon layers are removed. In addition, the abnormal HF C-V curve of the metal-silicon-BOX-silicon(MSOS) structure is observed and explained.