84 resultados para THERMAL-INJURY
Resumo:
The spatial longitudinal coherence length (SLCL), which is determined by the size of and the distance from the source, is introduced to investigate the longitudinal resolution of lensless ghost imaging. Its influence is discussed quantitatively by simulation. The discrepancy of position sensitivity between Scareelli et al. [Appl. Phys. Lett. 88, 061106 (2006)] and Basano and Ottonello [Appl. Phys. Lett. 88, 091109 (2006)] is clarified. (C) 2008 Optical Society of America.
Resumo:
A real-time, in situ fixing method by use of heating with a CO2 laser beam is suggested for thermal fixing of a small local hologram in the bulk of a Fe:LiNbO3 photorefractive crystal. For heating up to 100 degrees C-200 degrees C a volume with a shape similar to that of the laser beam a heat-guiding technique is developed. On the basis of the heat-transfer equations, different heating modes with or without metal absorbers for heat guiding-obtained by use of a continuous or pulsed laser beam are analyzed. The optimal mode may be pulsed heating with absorbers. On this basis experiments have been designed and demonstrated. It is seen that the fixing process with CO2 laser beam is short compared with the process by use of an oven, and the fixing efficiency is quite high. (C) 1998 Optical Society of America.
Resumo:
We present a theoretical model in which the band-transport equations and the coupled-wave equations are considered to study the two thermal-fixing methods (simultaneous fixing and postfixing) in Fe:LiNbO3. We found that, in simultaneous fixing, the existing ionic-grating affects the writing of the electronic grating by reduction of the coupling gain, and the grating envelope of the fixed-index grating is quite uniform inside the photorefractive crystal in comparison with the method of postfixing. The resulting diffraction efficiency of the fixed-volume grating is dependent mainly on the initial intensity modulation of the two writing beams. A set of experiments is also presented. (C) 1998 Optical Society of America.
Resumo:
Thermal resistance and thermal rise-time are two basic parameters that affect most of the performances of a laser diode greatly. By measuring waveforms received after a spectroscope at wavelengths varied step-by-step, the spectrally resolved waveforms can be converted to calculate the thermal rise-time. Basic formulas for the spectrum variation of a laser diode and the measurement set-up by using a Boxcar are described in the paper. As an example, the thermal rise-time of a p-side up packaged short-pulse laser diode was measured by the method to be 390 mu s. The method will be useful in characterizing diode lasers and LID modules in high-power applications. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A simple and practical method for the study of polymer thermal and mechanical properties using a fiber Bragg grating (FBG) sensor is presented for the first time, in which the FBG is embedded in a typical epoxy polymer. By measuring the sensitivity change of the FBG sensor, changes of the thermal-mechanical properties of the polymer with temperature and pressure can be measured. The experimental results show that this technique is capable of providing continuous in-line monitoring such properties with high sensitivity during transformation between the glassy state and the rubbery state of a polymer within the temperature and pressure range of 20 to 180 C and 0 to 15 MPa. (c) 2007 Society of Photo-Optical Instrumentation Engineers.
Resumo:
A simple and practical method for the study of polymer thermal and mechanical properties using a fiber Bragg grating (FBG) sensor is presented for the first time, in which the FBG is embedded in a typical epoxy polymer. By measuring the sensitivity change of the FBG sensor, changes of the thermal-mechanical properties of the polymer with temperature and pressure can be measured. The experimental results show that this technique is capable of providing continuous in-line monitoring such properties with high sensitivity during transformation between the glassy state and the rubbery state of a polymer within the temperature and pressure range of 20 to 180 C and 0 to 15 MPa. (c) 2007 Society of Photo-Optical Instrumentation Engineers.