129 resultados para Size reduction of materials.
Resumo:
Nanowires of SiC were synthesized by carbothermally reducing PVP/TEOS composite fibres obtained by electrospinning. High-resolution transmission electron microscopy (HRTEM) and selected-area electron diffraction (SAED) indicated that the SiC nanowires are single crystalline in nature. Both Fourier-transformed infrared spectroscopy and HRTEM indicated that a thin layer of SiO2 was formed on the outer surface of the nanowire as a result of post-heat treatment for the removal of residual carbon. Such SiO2 layer protects the inner SiC fibre from further oxidation. The formation mechanism of single-crystalline SiC nanowires was proposed based on our understanding and characterizations. The growth of the nanowire is believed to be along the ( 111) of its cubic cell.
Resumo:
The homogeneous electrocatalytic reduction of 1,2-diiodoethane by anions of the supramolecular complex of (beta-CD)(2)/C-60 in DMF solution is reported. The results show that the trianion of (beta-CD)(2)/C-60 exhibits electrocatalytic behavior towards the reduction of 1,2-diiodoethane, whereas the diani on is unable to reduce the diiodoethane. The second-order catalytic rate constant in DMF solution was determined to be 3.1 x 10(5) M-1 s(-1) by analysis of voltammetric responses under pseudo-first-order conditions with respect to (beta-CD)(2)/C-60. The results suggest that the host beta-cyclodextrin molecules have little effect on the electrocatalytic ability of the encapsulated C-60 toward organic halides.
Resumo:
Single crystal nanoplates with thickness less than 30 nm, characterized by hexagonal and truncated triangular shapes bounded mainly by {111} facets, were obtained in large quantities by aspartate reduction of gold chloride.
Resumo:
The multi-walled carbon nanotubes (MWNTs) modified glassy carbon electrode exhibited electrocatalytic activity to the reduction of oxygen in 0.1 M HAc-NaAc (pH 3.8) buffer solution. Further modification with cobalt porphyrin film on the MWNTs by adsorption, the resulted modified electrode showed more efficient catalytic activity to O-2 reduction. The reduction peak potential of O-2 is shifted much more positively to 0.12 V (vs. Ag/AgCl), and the peak current is increased greatly. Cyclic voltammetry (CV), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM), were used to characterize the material and the modified film on electrode surface. Electrochemical experiments gave the total number of electron transfer for oxygen reduction as about 3, which indicated a co-exist process of 2 electrons and 4 electrons for reduction of oxygen at this modified electrode. Meanwhile, the catalytic activities of the multilayer film (MVVNTs/CoTMPyP)(n) prepared by layer-by-layer method were investigated, and the results showed that the peak current of O-2 reduction increased and the peak potential shifted to a positive direction with the increase of layer numbers.
Resumo:
Compounds of Sr4Al14O15: Eu were prepared in air atmosphere by high temperature solid state reaction. The reduction of Eu3+--> Eu2+ was firstly observed in the aluminate phosphor of Sr4Al14O25: Eu synthesized in air condition. This made aluminate a new family and Sr4Al14O25 a new member of compounds in which Eu3+ ion could be reduced to Eu2+ form when fired in air atmosphere. The reduction of Eu3+ --> Eu2+ in Sr4Al14O25: Eu was explained by means of a charge compensation model. Experiments based on the model were designed and carried out, and the results supported this model.
Resumo:
Dendrimer-protected gold nanoparticles have been facilely obtained by heating an aqueous solution containing third generation poly(propyleneimine) dendrimers and HAuCl4 without the additional step of introducing other reducing agents. Transmission electron microscopy (TEM) and UV vis data indicate the size the nucleation and growth kinetics of gold nanoparticles thus formed which can be tuned by changing the initial molar ratio of dendrimer to gold.
Resumo:
Microperoxidase-11 (MP-11) was immobilized on the surface of a silanized glass carbon electrode by means of the covalent bond with glutaraldehyde. The measurements of cyclic voltammetry demonstrated that the formal redox potential of immobilized MP-11 was -170 mV. which is significantly more positive than that of MP-11 in a solution or immobilized on the surface of electrodes prepared with other methods. This MP-11 modified electrode showed a good electrocatalytic activity and stability for the reduction of oxygen and hydrogen peroxide.
Resumo:
The photoelectrocatalytic effect for the reduction of CO2 mediated with methylviologen (MV) was studied at mercury, polished silver and roughened silver electrodes using electrochemical and surface-enhanced Raman scattering (SERS) techniques. A large photoelectrocatalytic effect for the reduction of CO2 in the presence of MV was observed at the roughened silver electrode, whereas there was only a very small photoelectrocatalytic current at a more negative potential on mercury and polished silver electrodes. The SERS spectra of MV in the presence and absence of CO2, along with the electrochemical results, demonstrate that the surface adsorbed complexes, MV+ -Ag and MV0-Ag, played a role as the mediator for photoinduced electron transfer to CO2 in the solution. The results also suggest that the surface plasmon resonance of the nanoscale silver particle contributes to the overall photoelectrocatalytic effect on a roughened silver electrode.
Resumo:
A conductive carbon ceramic composite electrode (CCE) comprised of cc-type 1:12 phosphomolybdic acid (PMo12) and carbon powder in an organically modified silicate matrix was fabricated using a sol-gel method and characterized by scanning electron microscopy, cyclic voltammetry, and Osteryoung square-wave voltammetry. Osteryoung square-wave voltammograms of the modified electrode immersed in different acidic aqueous solutions present the dependence of current and redox potential on pH. The PMo12-doped CCE shows more reversible reaction kinetics, good stability and reproducibility, especially the renewal repeatability by simple polishing in the event of surface fouling or dopant leaching. Moreover, the modified electrode shows good catalytic activity for the electrochemical reduction of bromate.
Resumo:
Electrocatalytic reduction of O-2 and H2O2 at the glass carbon electrode modified with microperoxidase-11 immobilized with Nafion film has been studied by means of cyclic voltammetry and rotating disk electrode techniques. The modified electrode shows high catalytic activity toward the reduction of both O-2 and H2O2. The rate constants of Oz and H2O2 reduction at the modified electrode have been measured and compared. It is found that O-2 undergoes a four-electron reduction at the modified electrode and the catalytic activity for the reduction of O-2 is dependent on the pH of the solutions.
Resumo:
The reduction of RE3+ to RE2+ (RE=Eu, Sm and Tm) in SrB6O10 prepared in air by high-temperature solid state reaction was observed. The luminescent properties of Eu2+ and Tm2+ show f-d transition and Sm2+ shows f-f transition at room temperature. Three crystallographic sites for Sm2+ in matrix are available. Vibronic transition of D-5(0)-F-7(0) of Sm2+ was studied. The coupled phonon energy about 108 cm(-1), was determined: from the vibronic transition. Due to the thermal population from D-5(0) level, (D1-FJ)-D-5-F-7 (J=0, 1, 2) transitions of Sm2+ were observed at room temperature. A charge compensation mechanism is proposed as a possible explanation.
Resumo:
Two series of mixed oxides, CoAlM and MgAlM (M = Cr, Mn, Fe, Co, Ni, Cu), were prepared by calcining their corresponding hydrotalcite-like compounds (HTLc). The ratio of Mg: Al: M (or Co: Al: hi) was 3:1:1. The catalytic activity of all samples for the reaction of NO + CO was investigated. The results showed that the activity of CoAlM was much higher than that of MgAlM. The structure and the property of redox were characterized by XRD and H-2-TPR. The results indicated that only MgO phase was observed after calcining MgAlM hydrotalcites, and the transition metals became more stable. The spinel-like phase appeared in all of CoAlM samples after the calcination, and the transition metals were changed to be more active, and easily reduced. The activities of three series of mixed oxides CoAlCu obtained from different preparation methods, different ratio of Co:Al: Cu and at different calcination temperatures, were studied in detail for proposing the mechanism of reaction. The ability of adsorption of NO and CO were investigated respectively for supporting the mechanism.
Resumo:
A series of layered mixed oxides La4BaCu5-xMnxO13+lambda(x = 0-5) was prepared, characterized and used as catalysts for NO+CO reaction. It was found that all the samples were single phase having a structure with five-layered-perovskite. La4BaCu2Mn3O13+lambda showed the highest activity in the title reaction, this could be attributed to the synergetic effect between Cu and Mn. The results of TPR, TPD and excess oxygen investigations confirmed that the Cu ion would be the active center. The displacement of the Cu ion by Mn caused the Cu ion to be more easily reducible and more content of excess oxygen, and it was beneficial to the activity of the catalyst. The reaction mechanism was also proposed.
Resumo:
Photoelectrochemical reduction of nitrite and nitrate was studied on the surface of an electrochemically roughened silver electrode. The dependence of the photocurrent on photon energy, applied potential, and concentration of nitrite was determined. It was concluded that the photoelectrochemical reduction proceeds via a photoemission process followed by the capture of hydrated electrons by electron accepters. The excitation of plasmon resonances in nanosize metal structures produced during the roughening procedure resulted in the enhancement of the photoemission process. Ammonia was detected as one of the final products in this reaction. Mechanisms for the photoelectrochemical reduction of nitrite and nitrate are proposed.