213 resultados para SiSb phase change film
Resumo:
Photoinduced anisotropy in bacteriorhodopsin (BR) film is based on photoanisotropic selective bleaching of BR molecules under linearly polarized excitation light. It is modulated by the polarization orientation of the linearly polarized light. The anisotropic information recorded in the BR film is read by a circularly polarized light, which is in turn converted into an elliptical polarized light by the BR film. The rotation angle and the ellipticity of the elliptical polarized light are dependent on the polarization orientation of the linearly polarized excitation light. A phase-shifting interferometer based on the photoinduced anisotropy of BR film is presented theoretically and experimentally. Phase shift is controlled by the polarization orientation of the external excitation light, thus, the phase shift can be controlled without moving parts inside the interferometer, which contributes to the mechanical stability of the system.
Resumo:
A kind of hydrogenated diphasic silicon films has been prepared by a new regime of plasma enhanced chemical vapor deposition (PECVD) near the phase transition regime from amorphous to nanocrystalline. The microstructural properties of the films have been investigated by the micro-Raman and Fourier transformed Infrared (FT-IR) spectra and atom force microscopy (AFM). The obtained Raman spectra show not only the existence of nanoscaled crystallites, but also a notable improvement in the medium-range order of the diphasic films. For the FT-IR spectra of this kind of films, it notes that there is a blueshift in the Si-H stretching mode and a redshift in the Si-H wagging mode in respect to that of typical amorphous silicon film. We discussed the reasons responsible for these phenomena by means of the phase transition, which lead to the formation of a diatomic hydrogen complex, H-2* and their congeries.
Resumo:
The increased emphasis on sub-micron CMOS/SOS devices has placed a demand for high quality thin silicon on sapphire (SOS) films with thickness of the order 100-200 nm. It is demonstrated that the crystalline quality of as-grown thin SOS films by the CVD method can be greatly improved by solid phase epitaxy (SPE) process: implantation of self-silicon ions and subsequent thermal annealing. Subsequent regrowth of this amorphous layer leads to a greater improvement in silicon layer crystallinity and channel carrier mobility, evidenced, respectively, by double crystal X-ray diffraction and electrical measurements. We concluded that the thin SPE SOS films are suitable for application to high-performance CMOS circuitry. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
The microenvironment of the aqueous core phase in the black soap film of cationic surfactant cetyltrimethylammonium bromide with the anionic dye Brilliant Yellow as spectral probe has been studied by UV-vis spectroscopy. Under neutral and basic conditions, the dye aggregates in the films exist as both the acid and base forms in contrast to a preference of the base form in the bulk solutions. The specific property of black soap film, that the intrinsic pH value of the aqueous core phase insensitively responds to pH changes of the bulk solution, is directly observed through UV-vis spectra.
Resumo:
The morphology of a H-shaped block copolymer (poly(ethylene glycol) backbone and polystyrene branches (PS)(2)PEG(PS)(2)) in a thin film has been investigated. A peculiar square lamella that has a phase-separated microdomain at its surface is obtained after spin coating. The experimental temperature plays a critical role in the lamellar formation. The copolymer first self-assembles into square lamellar micelles with an incomplete crystalline core due to the crystallizability of PEG.
Resumo:
We systematically investigated the weak epitaxy growth (WEG) behavior of a series of planar phthalocyanine compounds (MPc), i.e., metal-free phthalocyanine (H2PC), nickel phthalocyanine (NiPc), copper phthalocyanine (CuPc), zinc phthalocyanine (ZnPc), iron phthalocyanine (FePc); cobalt phthalocyanine (CoPc), grown on a p-sexiphenyl (p-6P) monolayer film by selected area electron diffraction (SAED) and atomic force microscopy (AFM). Two types of epitaxial relations, named as incommensurate epitaxy and commensurate epitaxy, were identified between phthalocyanine compounds and the substrate of the p-6P film.
Resumo:
Phase separation of bisphenol A polycarbonate (PC) and poly(methyl methacrylate) (PMMA) thin blend film is suppressed by addition of solid epoxy oligomer. Epoxy has strong intermolecular interactions with both PC and PMMA, while PC and PMMA are quite incompatible with each other. Consequently, phase separation in the PC/PMMA blend film pushes epoxy to the interface; at the same time, PC and epoxy react readily at the interface to form a cross-linking structure, binding PMMA chains together. Therefore, the interface between PC and PMMA is effectively reinforced, and the PC/PMMA thin blend film is stabilized against phase separation. On the other hand, only an optimal content of epoxy (i.e., 10 wt %) can serve as an efficient interfacial agent. In contrast to the traditional reactive compatibilization, here we observed that the cross-linking structure along the interface is much more stable than block or graft copolymers. Atomic force microscopy (AFM) is used to characterize the morphological changes of the blend films as a function of annealing time. Two-dimensional fast Fourier transform (2D-FFT) of AFM data allows quantitative investigation of the scaling behavior of phase separation kinetics.
Resumo:
Well-ordered nanostructured polymeric supramolecular thin films were fabricated from the supramolecular assembly of poly(styrene-block-4-vinylpyridine) (PS-b-P4VP)(H+) and poly(methyl methacrylate)-dibenzo-18-crown-6-poly(methyl methacrylate) (PMCMA). A depression Of cylindrical nanodomains was formed by the block of P4VP(H+) and PMCMA associates surrounded by PS. The repulsive force aroused from the incompatibility between the block of P4VP(H+) and PMCMA was varied through changing the molecule weight (M-w) of PMCMA, the volume fraction of the block of P4VP(H+), and annealing the film at high temperature. Increasing the repulsive force led to a change of overall morphology from ordered nanoporous to featureless structures. The effects of solvent nature and evaporation rate on the film morphology were also investigated. Further evolution of surface morphologies from nanoporous to featureless to nanoporous structures was observed upon exposure to carbon bisulfide vapors for different treatment periods. The wettability of the film surface was changed from hydrophilicity to hydrophobicity due to the changes of the film surface microscopic composition.
Resumo:
Ordered hexagonal droplets patterns in phase-separating polymeric blend films of polystyrene and poly(2-vinylpyridine) (PS/PVP) formed due to the convection effect by solvent evaporation. The influences of PS molecular weight, solvent evaporation rate, and the weight ratio of PS to PVP on the PVP-rich domains pattern formation and distributions were investigated by atomic force microscope (AFM). Only in an appropriate range of molecular weight of PS, can the ordered pattern form. Too low or too high molecular weight of PS led no ordered pattern due to the viscosity effects. The increase of solvent evaporation rate decreased the mean radius of the PVP-rich domains and the intervals between the centers of the domains due to the enhancement of the viscosity on the top layer of the fluid film. The increase of the weight ratio of PS to PVP decreased mean radius of the PVP-rich domains whereas the intervals between the centers of droplets remained constant. Therefore, the size and the distributions of ordered patterns can be tuned by the polymer molecular weight, the weight ratio of the two components and the solvent evaporation rate.
Resumo:
By addition of a small amount of poly(methyl methacrylate) (PMMA) into polystyrene (PS), we present a novel approach to inhibit the dewetting process of thin PS film through phase separation of the off-critical polymer mixture (PS/PMMA). Owing to the preferential segregation of PMMA to the solid SiOx substrate, a nanometer thick layer, rich in PMMA phase, is formed. It is this diffusive PMMA-rich phase layer near the substrate that alters the dewetting behavior of the PS film. The degree of inhibition of dewetting depends on the concentration and molecular weight of PMMA component. PMMA with low (15.9k) and intermediate (102.7k) molecular weight stabilizes the films more effectively than that with a higher molecular weight (387k).
Resumo:
Square-wave voltommetry is used to study the oxidation of polypyrrole doped with dodecylsulfate. The net current curve in this experiment shows why the oxidation current does not display the capacitive-like shape common in cyclic voltammetry. In cyclic voltammetry, the redox behavior of polypyrrole is attributed to the size of dodecylsulfate, irreversible incorporation and the complete consumption of dodecylsulfate. After the polypyrrole film was scanned in aqueous NaCl solution, square wave voltammetric measurements show different results, indicating the change of the polymer nature with regard to the charge transport. This is explained by anion replacement, exclusion and the change of the charge transport mechanism.
Resumo:
Since hydration forces become very strong at short range and are particularly important for determining the magnitude of the adhesion between two surfaces or interaction energy, the influences of the hydration force and elastic strain energy due to hydration-induced layering of liquid molecules close to a solid film surface on the stability of a solid film in a solid-on-liquid (SOL) nanostructure are studied in this paper. The liquid of this thin SOL structure is a kind of water solution. Since the surface forces play an important role in the structure, the total free energy change of SOL structures consists of the changes in the bulk elastic energy within the solid film, the surface energy at the solid-liquid interface and the solid-air interface, and highly nonlinear volumetric component associated with interfacial forces. The critical wavelength of one-dimensional undulation, the critical thickness of the solid film, and the critical thickness of the liquid layer are studied, and the stability regions of the solid film have been determined. Emphasis is placed on calculation of critical values, which are the basis of analyzing the stability of the very thin solid film.
Resumo:
A new approach is developed to the fabrication of high-quality three-dimensional macro-porous copper films. A highly-ordered macroporous copper film is successfully produced on a polystyrene sphere (PS) template that has been modified by sodium dodecyl sulfate (SDS). It is shown that this procedure can change a hydrophobic surface of PS template into a hydrophilic surface. The present study is devoted to the influence of the electrolyte solution transport on the nucleation process. It is demonstrated that the permeability of the electrolyte solution in the nanochannels of the PS template plays an important role in the chemical electrodeposition of high-quality macroporous copper film. The permeability is drastically enhanced in our experiment through the surface modi. cation of the PS templates. The method could be used to homogeneously produce a large number of nucleations on a substrate, which is a key factor for the fabrication of the high-quality macroporous copper film.
Resumo:
A visual observation of liquid-gas two-phase flow in anode channels of a direct methanol proton exchange membrane fuel cells in microgravity has been carried out in a drop tower. The anode flow bed consisted of 2 manifolds and 11 parallel straight channels. The length, width and depth of single channel with rectangular cross section was 48.0 mm, 2.5 mm and 2.0 mm, respectively. The experimental results indicated that the size of bubbles in microgravity condition is bigger than that in normal gravity. The longer the time, the bigger the bubbles. The velocity of bubbles rising is slower than that in normal gravity because buoyancy lift is very weak in microgravity. The flow pattern in anode channels could change from bubbly flow in normal gravity to slug flow in microgravity. The gas slugs blocked supply of reactants from channels to anode catalyst layer through gas diffusion layer. When the weakened mass transfer causes concentration polarization, the output performance of fuel cells declines.