196 resultados para Scandium compounds
Resumo:
Pyrazoline derivatives have been used widely in dyeing industry as fluorescent whitening agents due to their excellent capability. According to Schellhammer theory of the relation between chemical structure and fluorescent quality, six new fluorescent compounds were designed and synthesized which contained the benzothiazole group in the I-pyrazoline, the indole group in the 3-pyrazoline and the derivatives of phenyl in the 5-pyrazoline. The structure of target compounds was confirmed by IR, H-1 NMR, MS and elementary analysis. The fluorescence spectra showed that these compounds had good fluorescence. They could absorb ultraviolet light at near 353 nm. The fluorescence maximum emission wavelengths were about 430-443 nm. It was a kind of promising fluorescence compounds. The largest fluorescence emission wavelength and the fluorescence intensity were related to the substituted group of the compounds. When the 6-Br group was introduced into benzothiazole, the fluorescence emission wavelength exhibited a blue shift, and the fluorescence intensity increased.
Resumo:
Four diboron-contained ladder-type pi-conjugated compounds 1-4 were designed and synthesized. Their thermal, photophysical, electrochemical properties, as well as density functional theory calculations, were fully investigated. The single crystals of compounds 1 and 3 were grown, and their crystal structures were determined by X-ray diffraction analysis. Both compounds have a ladder-type g-conjugated framework. Compounds I and 2 possess high thermal stabilities, moderate solid-state fluorescence quantum yields, as well as stable redox properties, indicating that they are possible candidates for emitters and charge-transporting materials in electroluminescent (EL) devices. The double-layer device with the configuration of [ITO/NPB (40 nm)/1 or 2 (70 nm)/LiF (0.5 nm)/Al (200 nm)] exhibited good EL performance with the maximum brightness exceeding 8000 cd/m(2).
Resumo:
The solid solutions of CdYFeWO7, which are cubic pyrochlores of the type A(2)B(2)O(7), have been prepared and their structures were determined using Ab initio method. Rietveld refinement of the powder XRD data showed that CdYFeWO7 adopted cubic (Fd-3m) structure, while oxides crystallized in a defect-pyrochlore structure where both O (48f) and O'(8b) sites were partially occupied, and the frustrated cations sublattice precluded long range ordering of Fe/W in the pyrochlore structure. Charge distribution analysis also suggested incomplete occupation of different oxygen sites, thus the compound was non-stoichiometric, with the formula CdYFeW0.982O6.94, Magnetic measurements were carried out to find that Fe ions were in the high spin trivalent state. Curie Weiss paramagnetism down to similar to 5 K and the characteristic superposition between FC and ZFC suggested spin liquid rather than spin glass state.
Resumo:
A solution-phase approach to synthesize four kinds of mixed-valence, transition metal compounds nanotube is described. The approach is based on the self-assembly of siloxane sol. The resulted production of mixed-valence, transition metal compounds share a common structural characteristic of tubular geometrical morphology, at least for the ones we studied. The results demonstrate that the synthesis strategy can be a general route for preparation of compound nanotubes. In addition, the size control of nanotubular materials can be easily achieved through varying the ionic strength of solution. Based on the strategy, the diameters of ultrathin Ru-Fe nanotubes can be easily tuned between 100 nm and 800 nm.
Resumo:
The separation of Sc(III) from Y(III), La(III) and Yb(III) in [C(8)mim][PF6] containing Cyanex 925 has been investigated, and is reported in this paper. A cation exchange mechanism of Sc(III) in [C(8)mim][PF6] and Cyanex 925 is proposed by study of the influence of anionic and cationic species on the extraction. The coefficient of the equilibrium equation of Sc(III) was confirmed by slope analysis of log D-Sc vs log [Cyanex 925], and the loading capacity also confirmed the stoichiometry of Cyanex 925 to Sc(III) was close to 3:1. Infrared data for Cyanex 925 saturated with Sc(III) in [C(8)mim][PF6] indicated strong interaction between P=O of Cyanex 925 and Sc(III). In addition, the relationship between log D-Sc and temperature showed that temperature had little influence on the extraction process, and the resulting thermodynamic parameters indicated that an exothermic process was involved.
Resumo:
The dielectric definition of average energy gap E-g of the chemical bond has been calculated quantitatively in Eu3+-doped 30 lanthanide compounds based on the dielectric theory of chemical bond for complex structure crystals. The relationship between the experimental charge transfer (CT) energy of Eu3+ and the corresponding average energy gap E-g has been studied. The results show that the CT energy increases linearly with increasing of the average energy gap E-g. The linear model is obtained. It allows us to predict the CT position of Eu3+-doped lanthanide compounds with knowledge of the crystal structure and index of refraction. Applied to the Ca4GdO(BO3)(3):Eu and Li2Lu5O4(BO3)(3):Eu crystals, the predicted results of CT energies are in good agreement with the experimental values, and it can be concluded that the lowest CT energy in Li2Lu5O4(BO3)(3):Eu originates from the site of Lu1.
Resumo:
Reactions of neutral amino phosphine compounds HL1-3 with rare earth metal tris(alkyl)s, Ln(CH2SiMe3)(3)(THF)(2), afforded a new family of organolanthanide complexes, the molecular structures of which are strongly dependent on the ligand framework. Alkane elimination reactions between 2-(CH3NH)-C6H4P(Ph)(2) (HL1) and Lu(CH2SiMe3)(3)(THF)(2) at room temperature for 3 h generated mono(alkyl) complex (L-1)(2)Lu(CH2SiMe3)(THF) (1). Similarly, treatment of 2-(C6H5CH2NH)-C6H4P(Ph)(2) (HL2) with Lu(CH2SiMe3)(3)(THF)(2) afforded (L-2)(2)Lu(CH2SiMe3)(THF) (2), selectively, which gradually deproportionated to a homoleptic complex (L-2)(3)Lu (3) at room temperature within a week. Strikingly, under the same condition, 2-(2,6-Me2C6H3NH)-C6H4P(Ph)(2) (HL3) swiftly reacted with Ln(CH2SiMe3)(3)(THF)(2) at room temperature for 3 h to yield the corresponding lanthanide bis(alkyl) complexes L(3)Ln(CH2SiMC3)(2)(THF)(n) (4a: Ln = Y, n = 2; 4b: Ln = Sc, n = 1; 4c: Ln = Lu, n = 1; 4d: Ln = Yb, n = 1; 4e: Ln = Tm, n = 1) in high yields. All complexes have been well defined and the molecular structures of complexes 1, 2, 3 and 4b-e were confirmed by X-ray diffraction analysis. The scandium bis(alkyl) complex activated by AlEt3 and [Ph3C][B(C6F5)(4)], was able to catalyze the polymerization of ethylene to afford linear polyethylene.
Resumo:
Two copper-organic framework supramolecular assemblies of p-sulfonatocalix[4]arene and 1,10-phenanthroline Cu-2[C12H8N2][C28H20S4O16][H2O](23.5) (1) and Cu-3[C12H8N2](3)[C28H19S4O16]Cl[H2O](17.6) (2) were obtained by pH-dependent synthesis at room temperature. Both structures show ID water-filled channels (rectangular shape in I and triangular in 2) with the solvent-accessible volume occupying 30.8% (1) and 24.2% (2) of the unit-cell volume, respectively. The calixarene molecules in both structures assume analogous cone shapes of C-2 nu symmetry instead of the conventional C-4 nu symmetry. Their connecting to different amounts of copper/phenanthroline cations leads to the formation of different structures.
Resumo:
Ceramic carbon materials were developed as new sorbents for solid-phase extraction of organic compounds using chlorpromazine as a representative. The macroporosity and heterogeneity of ceramic carbon materials allow extracting a large amount of chlorpromazine over a short time. Thus, the highly sensitive and selective determination of chlorpromazine in urine sample was achieved by differential pulse voltammograms after only 1-min extraction. The total analysis time was less than 3 min. In comparison with other electrochemical and electrochemi-luminescent methods following 1-min extraction, the proposed method improved sensitivity by about 2 and 1 order of magnitude, respectively. The fast extraction, diversity, and conductivity of ceramic carbon materials make them promising sorbents for various solid-phase extractions, such as solid-phase microextraction, thin-film microextraction, and electrochemically controlled solidphase extraction. The preliminary applications of ceramic carbon materials in chromatography were also studied.
Resumo:
We report a method for estimating the positions of charge transfer (CT) bands in Eu3+-doped complex crystals. The environmental factor ( he) influencing the CT energy is presented. he consists of four chemical bond parameters: the covalency, the bond volume polarization, the presented charge of the ligand in the chemical bond, and the coordination number of the central ion. These parameters are calculated with the dielectric theory of complex crystals. The relationship between the experimental CT energies and calculated environmental factors was established by an empirical formula. The calculated values are in good agreement with the experimental results. Such a relationship was confirmed by detailed analysis. In addition, our method is also useful to predict the charge-transfer position of any other rare earth ion.
Resumo:
The activities/properties of two molecules with identical formula but different configuration states of the asymmetric atoms are different. Thus, usually the common topological indices are not suitable. In this study, the chiral topological indices were obtained by extending A(mi) indices suggested by our laboratory and molecular connectivity indices. The modified topologial indices have been used for the studies on D2 for dopamine receptor and a receptor activities of fourteen N-alkylated 3-(3-hydroxypyenyl)-piperidines. It has been observed that selected variables possess low correlations. The results obtained by using multiple regression analysis and artificial neural networks are satisfactory.
Resumo:
Macromolecular conjugates of two kinds of natural polysaccharides, that from Panax quinquefolium linn (PQPS) and Ganoderma applanatum pat (GAPS), with gadolinium-diethylenetriaminepenta-acetic acid (Gd-DTPA) have been synthesized and characterized by means of FTIR, elementary analysis and ICP-AES. Their stability was investigated by competition study with Ca2+, EDTA (ethylenediaminetetraacetic acid) and DTPA. Polysaccharide-bound complexes exhibit T-1 relaxivities of 1.5-1.7 times that of Gd-DTPA in D2O at 25degreesC and 9.4T. MR imaging of Sprague-Dawley (SD) rats showed remarkable enhancement in rat liver and kidney after i.v. injection of these two complexes: liver parenchyma 60.9+/-5.6%, 57.8+/-7.4% at 65-85 min; kidney 144.9+/-14.5%, 199.9+/-25.4% at 10-30 min for PQPS-GdDTPA, GAPS-Gd-DTPA at gadolinium dose of 0.083 and 0.082 mmol/kg, respectively. Our preliminary in vivo and in vitro study indicates that the two kinds of polysaccharide-bound complexes are potential tissue-specific contrast agents for MRI.
Resumo:
In this paper for the first time the compounds Y0.5-xLi1.5VO4:(Dy3+, Eu3+),(YLV:Dy,Eu) (0.01
Resumo:
Separation of scandium(III), yttrium(III) and lanthanum(III) was performed by high-performance centrifugal partition chromatography (HPCPC) employing the stationary phase of S-octyl phenyloxy acetic acid (CA-12). The liquid-liquid extraction behavior of CA-12 for Sc(III), Y(III) and La(III), the acidity of aqueous phase, and the operation conditions of HPCPC were examined. The retention volume (V-R) increased with the order of Y(III), La(III) and Sc(III) accompanied with the elution of the mobile phase in different pH, which is lowered from 4.6 to 2.1.