343 resultados para SILICA SURFACES
Resumo:
A model has been proposed for describing elastic deformation of wafer surfaces in bonding. The change of the surface shape is studied on the basis of the distribution of the periodic strain field. With the condition of diminishing periodic strain away from the interface, Airy stress function has been found that satisfies the elastic mechanical equilibrium. The result reveals that the wavy interface elastically deforms a spatial wavelength from the interface. (C) 2000 American Institute of Physics. [S0021-8979(00)04219-5].
Resumo:
We reported the optical properties of self-assembled In0.55Al0.45As quantum dots grown by molecular beam epitaxy on (001) and (n11)A/B(n = 3,5)GaAs substrates. Two peaks were observed in the photoluminescence (PL) spectra from quantum dots in the (001) substrate and this suggested two sets of quantum dots different in size. For quantum dots in the high-index substrates, the PL spectra were related to the atomic-terminated surface (A or B substrate). The peaks for the B substrate surfaces were in the lower energy position than that for the (001) and A type. In addition, quantum dots in the B substrate have comparatively high quantum efficiency. These results suggested that high-index B-type substrate is more suitable for the fabrication of quantum dots than (001) and A-type substrates at the same growth condition. (C) 2000 American Vacuum Society. [S0734-211X(00)04701-6].
Resumo:
Two-dimensional (2D) ordering of self-assembled InxGa1-xAs quantum dots (QDs) fabricated on GaAs(311)B surface by molecular beam epitaxy (MBE) are reported. The QDs are aligned into rows deferring from the direction of the misorientation of the substrate, and strongly dependent on the mole In content x of InxGa1-xAs solid solution. The ordering alignment deteriorates significantly as the In content is increased to above 0.5. The 2D ordering can be described as a centered rectangular unit mesh with the two sides parallel to [01 (1) over bar] and [(2) over bar 33], respectively. Their relative arrangement seems to be determined by a combination of the strongly repulsive elastic interaction between neighbouring islands and the minimization of the strain energy of the whole system. The ordering also helps to improve the size homogeneity of the InGaAs islands. Photoluminescence (PL) result demonstrates that QDs grown on (311)B have the narrowest linewidth and the strongest integrated intensity, compared to those grown on (100) and other high-index planes under the same condition. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
The two-dimensional (2D) ordering of self-assembled InxGa1-xAs quantum dots (QDs) fabricated on GaAs(3 1 1)B surface by molecular beam epitaxy (MBE) are reported. The QDs are aligned into rows differing from the direction of the misorientation of the substrate, and strongly dependent on the mole In content x of InxGa1-As-x solid solution. The ordering alignment deteriorates significantly as the In content is increased to above 0.5. The 2D ordering can be described as a centered rectangular unit mesh with the two sides parallel to [0 1 (1) over bar] and [(2) over bar 3 3], respectively. Their relative arrangement seems to be determined by a combination of the strongly repulsive elastic interaction between the neighboring islands and the minimization of the strain energy of the whole system. The ordering also helps to improve the size homogeneity of the InGaAs islands. The photoluminescence (PL) result demonstrates that QDs grown on (3 1 1)B have the narrowest linewidth and the strongest integrated intensity, compared to those on (1 0 0) and other high-index planes under the same condition. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Photoluminescence (PL) investigation was carried out on GaInP/GaAs multiple quantum wells structures grown on (001) and (311) B surfaces of GaAs by gas source molecular beam epitaxy. Superlattice structures of GaAs/GaInP grown on (001) GaAs substrate were also studied in comparison. Deep-level luminescence was seen to dominate the PL spectra from the quantum wells and superlattice structures that were grown on (001) GaAs substrate. In contrast, superior optical properties were exhibited in the same structures grown on (311) B GaAs surfaces. The results suggested that GaAs/GaInP quantum well structures on (311) B oriented substrates could efficiently suppress the deep-level emissions, result in narrower PL peaks indicating smooth interfaces. (C) 1998 American Institute of Physics.
Resumo:
Morphology evolution of high-index (331)A surfaces during molecular beam epitaxy (MBE) growth have been investigated in order to uncover their unique physic properties and fabricate spatially ordered low dimensional nanostructures. Atomic Force Microscope (AFM) measurements have shown that the step height and terrace width of GaAs layers increase monotonically with increasing substrate temperature in conventional MBE. However, this situation is reversed in atomic hydrogen-assisted MBE, indicating that step bunching is partly suppressed. We attribute this to the reduced surface migration length of Ga adatoms with atomic hydrogen. By using the step arrays formed on GaAs (331)A surfaces as the templates, we fabricated laterally ordered InGaAs self-aligned nanowires.
Resumo:
A new-style silica planar lightwave circuit (PLC) hybrid integrated triplexer, which can demultiplex 1490-nm download data and 1550-nm download analog signals, as well as transmit 1310-nm upload data, is presented. It combines SiO2 arrayed waveguide gratings (AWGs) with integrated photodetectors (PDs) and a high performance laser diode (LD). The SiO2 AWGs realize the three-wavelength coarse wavelength-division multiplexing (CWDM). The crosstalk is less than 40 dB between the 1490- and 1550-nm channels, and less than 45 dB between 1310- and 1490- or 1550-nm channels. For the static performances of the integrated triplexer, its upload output power is 0.4 mW, and the download output photo-generated current is 76 A. In the small-signal measurement, the upstream 3-dB bandwidth of the triplexer is 4 GHz, while the downstream 3-dB bandwidths of both the analog and digital sections reach 1.9 GHz.
nbs: a new representation for point surfaces based on genetic clustering algorithm: cad and graphics
Resumo:
The characteristic features of the absorption and photoluminescence spectra of ZnSe quantum dots (QDs) inside a silica matrix derived from a sol-gel method were studied at room temperature. Compared with the bulk materials, the absorption edges of ZnSe QDs in silica gel glass were shifted to higher energies and the spectra exhibited the discrete excitonic features due to the quantum confinement effects. Besides the band-edge emission, photoluminescence at ultraviolet excitation also showed the emissions related to the higher excitonic states. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Micro Fabry-Perot (F-P) interferometers (MFPIs) are machined in a single-mode fiber (SMF) and a photonic crystal fiber (PCF) by using a near-infrared femtosecond laser, respectively. The strain and temperature characteristics of the two MFPIs with an identical cavity length are investigated and the experimental results show that the strain sensitivity of the PCF-based MFPI is smaller than that of the SMF-based MFPI due to their different waveguide structures, while the two MFPIs have close temperature sensitivities which are much smaller than that of an in-line SMF etalon sensor reported previously. These MFPIs in silica fibers are compact, stable, inexpensive, capable for mass-production and easy fabrication, offering great potentials for wide sensing applications. (c) 2007 Optical Society of America.