116 resultados para Radiation induced skin reactions
Resumo:
The adsorption of K on the n-GaAs(I 0 0) surface was investigated by X-ray photoelectron spectroscopy (XPS) and synchrotron radiation photoemission spectroscopy (SR-PES). The Ga3d and As3d core level was measured for clean and K adsorbed GaAs(I 0 0) surface. The adsorption of K induced chemical reaction between K and As, and the K-As reactant formed when the K coverage theta > I ML. The chemical reaction between K and Ga did not occur, but Ga atoms were exchanged by K atoms. From the data of band bending, the Schottky barrier is 0.70 eV. The Fermi-level pinning was not caused by defect levels. The probable reason is that the dangling bonds of surface Ga atoms were filled by the outer-shell electrons of K atoms, forming a half-filled surface state. The Fermi-level pinning was caused by this half-filled surface state. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
In situ energy dispersive X-ray diffraction measurements on nanocrystalline zinc sulfide have been performed by using diamond anvil cell with synchrotron radiation. There is a phase transition which the ultimate structure is rocksalt when the pressure is up to 16.0GPa. Comparing the structure of body materials, the pressure of the phase transition of nano zinc sulfide is high. We fit the: Birch-Murnaghan equation of state and obtained its ambient pressure bulk modulus and its pressure derivative. The bulk modulus of nanocrystalline zinc sulfide is higher than that of body materials, it indicate that the rigidity of nanocrystalline zinc sulfide is high.
Resumo:
The excitonic optical absorption of GaAs bulk semiconductors under intense terahertz (THz) radiation is investigated numerically. The method of solving initial-value problems, combined with the perfect matched layer technique, is used to calculate the optical susceptibility. In the presence of a driving THz field, in addition to the usual exciton peaks, 2p replica of the dark 2p exciton and even-THz-photon-sidebands of the main exciton resonance emerge in the continuum above the band edge and below the main exciton resonance. Moreover, to understand the shift of the position of the main exciton peak under intense THz radiation, it is necessary to take into consideration both the dynamical Franz-Keldysh effect and ac Stark effect simultaneously. For moderate frequency fields, the main exciton peak decreases and broadens due to the field-induced ionization of the excitons with THz field increasing. However, for high frequency THz fields, the characteristics of the exciton recur even under very strong THz fields, which accords with the recent experimental results qualitatively.
Resumo:
Albumin, the most abundant protein components of blood plasma, is synthesized and secreted by liver cells in vertebrates. Recently, it was demonstrated that frog Bombina maxima albumin is also expressed in skin. Both B. maxima albumins from skin and serum (BmA-skin and BmAserum) have similar biochemical characteristics except that the former contains haem b. Present studies showed that BmA-skin exhibited cytotoxic activity on H9 and C8166 cells. Pretreated with hemin to induce erythroid differentiation, K562 cells lost their resistance to cytotoxicity of BmAskin. After treating cells with BmA-skin for 48 h, 50 percentage cytotoxic concentrations (CC50) of BmA-skin on H9, C8166 and hemin-treated K562 cells were 1.31±0.09, 1.59±0.08 and 2.28±0.06 μM, respectively. The cell death induced by BmA-skin was mediated by apoptosis of the tested cell lines, as demonstrated by nuclear morphological changes, DNA fragmentation and DNA hypodiploidy of apoptosis cells. At BmA-skin concentration of 2 μM, 27.3%, 19.7% and 17.8% of H9, C8166 and hemin-treated K562 cells were found to be apoptotic. In contrast, BmA-serum possessed no cytotoxic and apoptosis-inducing activity on all the cell lines tested, even with concentration used up to 15 μM. These results indicated that bound haem b in BmA-skin contributed significantly to its cytotoxic and apoptosis-inducing activity on the cell lines assayed.
Resumo:
Neutron-irradiated high-resistivity silicon detectors have been subjected to elevated temperature annealing (ETA). It has been found that both detector full depletion voltage and leakage current exhibit abnormal annealing (or ''reverse annealing'') behaviour for highly irradiated detectors: increase with ETA. Laser induced current measurements indicate a net increase of acceptor type space charges associated with the full depletion voltage increase after ETA. Current deep level transient spectroscopy (I-DLTS) and thermally stimulated current (TSC) data show that the dominant effect is the increase of a level at 0.39 eV below the conduction band (E(c) - 0.39 eV) or a level above the valence band (E(v) + 0.39 eV). Candidates tentatively identified for this level are the singly charged double vacancy (V-V-) level at E(c) - 0.39 eV, the carbon interstitial-oxygen interstitial (C-i-O-i) level at E(v) + 0.36 eV, and/or the tri-vacancy-oxygen center (V3O) at E(v) + 0.40 eV.
Resumo:
Neutron induced defect levels in high resistivity silicon detectors have been studied using a current-based macroscopic defect analysis system: thermally stimulated current (TSC) and current deep level transient spectroscopy (I-DLTS). These studies have been correlated to the traditional C-V, I-V, and transient current and charge techniques (TCT/TChT) after neutron radiation and subsequent thermal anneals. It has been found that the increases of the space charge density, N-eff, in irradiated detectors after thermal anneals (N-eff reverse anneal) correspond to the increases of deep levels in the silicon bandgap. In particular, increases of the double vacancy center (V-V and V-V-- -) and/or C-i-O-i level have good correlations with the N-eff reverse anneal. It has also been observed that the leakage current of highly irradiated (Phi(n) > 10(13) n/cm(2)) detectors increases after thermal anneals, which is different from the leakage current annealing behavior of slightly irradiated (Phi(n) < 10(13) n/cm(2)) detectors. It is apparent that V-V center and/or C-i-O-i level play important roles in both N-eff and leakage current degradations for highly irradiated high resistivity silicon detectors.
Resumo:
Size modification of Au nanoparticles (NPs), deposited on the Au-thick film surface and irradiated by slow highly charged ions (SHCI) 40Arq+ (3 6 q 6 12) with fixed low dose of 4.3 1011 ions/cm2 and various energy ranging from 74.64 to 290.64 keV at room temperature (293.15 K), was investigated by atomic force microscopy (AFM) and transmission electron microscopy (TEM). The effect of projectile kinetic energy on the modified size of NPs was explored by an appropriate choice of the fixed process parameters such as ion flux, irradiation temperature, incident angle, irradiation time, etc. The morphological changes of NPs were interpreted by models involving collisional mixing, Ostwald ripening (OR) and inverse Ostwald ripening (IOR) of spherical NPs on a substrate. A critical kinetic energy as well as a critical potential energy of the projectile in the Au NPs size modification process were observed.
Resumo:
A LIBS setup was built in the Institute of Modern Physics. In our experiments, LIBS spectra produced by infrared radiation of Nd : YAG nanosecond laser with 100 and 150 mJ pulse energy, respectively, were measured by fiber optic spectrometer in the ranges of 230-430 run and 430-1080 nm with a delay time of 1.7 and gate width of 2 ms for potato and lily samples prepared by vacuum freeze-dried technique. The lines from different metal elements such as K, Ca, Na, Mg, Fe, Al, Mn and Ti, and nonmetal elements such as C, N, O and H, and some molecular spectra from C-2, CaO, and CN were identified according to their wavelengths. The relative content of the six microelements, Ca, Na, K, Fe, Al, and Mg in the samples were analyzed according to their representative line intensities. By comparison we found that there are higher relative content of Ca and Na in lily samples and higher relative content of Mg in potato samples. The experimental results showed that LIBS technique is a fast and effective means for measuring and comparing the contents of microelements in plant samples.
Resumo:
This study provides a useful biodosimetry protocol for radiation accidents that involve high doses of heavy particle radiation. Human peripheral blood lymphocytes (PBLs) were irradiated in vitro with high doses (5–50 Gy) of charged heavy-ion particles (carbon ions, at an effective linear-energy-transfer (LET) of 34.6 keV/ m), and were then stimulated to obtain dividing cells. PBLs were treated with 100nMcalyculin A to force chromosomes to condense prematurely, and chromosome spreads were obtained and stained with Giemsa. The G2 prematurely condensed chromosome (G2-PCC) index and the number of G2-PCC including fragments (G2-PCC-Fs) per cell for each radiation dose point were scored. Dose-effect relationships were obtained by plotting the G2-PCC indices or G2-PCC-Fs numbers against radiation doses. The G2-PCC index was greater than 5% up to doses of 15 Gy; even after a 30Gy radiation dose, the index was 1 to 2%. At doses higher than 30 Gy, however, the G2-PCC indices were close to zero. The number of G2-PCC-Fs increased steeply for radiation doses up to 30 Gy at a rate of 1.07 Gy−1. At doses higher than 30 Gy, the numbers of G2-PCC-Fs could not be accurately indexed because of the limited numbers of cells for analysis. Therefore, the number of G2-PCC-Fs could be used to estimate radiation doses up to 30 Gy. In addition, a G2-PCC index close to zero could be used as an indicator for radiation doses greater than 40 Gy.
Resumo:
Purpose: To estimate the biological risks to the immune system of the type of space radiation, 12C6+, encountered by cosmonauts during long-term travel in space. Materials and methods: The Kun-Ming strain mice were whole-body irradiated by 12C6+ ion with 0, 0.01, 0.05, 0.075, 0.2, 0.3, 0.5, 0.75, 1 or 2 Gy, at a dose rate of 1 Gy/min. At 35 days after irradiation, the thymus and spleen weights were measured, the natural killer (NK) cells activity of spleen was determined by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT), and the interferon-gamma (IFN-gamma) levels in serum and thymus were detected with enzyme-linked immunosorbent assays (ELISA). Results: The results showed that the thymus weight, IFN-gamma levels in serum and the activity of splenic NK-cells had significantly increased at a dose of 0.05 Gy. With further dose increase, the weight of spleen continued to increase but the weight of thymus, IFN-gamma level and NK-cells activity declined. Conclusions: These results suggest that the dose of 0.05 Gy irradiation has a stimulatory effect on mouse immunity; this effect declined with increasing dose.
Resumo:
Irradiation has been widely reported to damage organisms by attacking on proteins, nucleic acid and lipids in cells. However, radiation hormesis after low-dose irradiation has become the focus of research in radiobiology in recent years. To investigate the effects of pre-exposure of mouse brain with low-dose C-12(6+) ion or Co-60 gamma (gamma)-ray on male reproductive endocrine capacity induced by subsequent high-dose irradiation, the brains of the B6C3F(1) hybrid strain male mice were irradiated with 0.05 Gy of C-12(6+) ion or Co-60 gamma-ray as the pre-exposure dose, and were then irradiated with 2 Gy as challenging irradiation dose at 4 h after pre-exposure. Serum pituitary gonadotropin hormones, follicle-stimulating hormone (FSH) and luteinizing hormone (LH), testosterone, testis weight, sperm count and shape were measured on the 35th day after irradiation. The results showed that there was a significant reduction in the levels of serum FSH, LH, testosterone, testis weight and sperm count, and a significant increase in sperm abnormalities by irradiation of the mouse brain with 2 Gy of C-12(6+) ion or Co-60 gamma-ray. Moreover, the effects were more obvious in the group irradiated by C-12(6+) ion than in that irradiated by Co-60 gamma-ray. Pre-exposure with low-dose C-12(6+) ion or Co-60 gamma-ray significantly alleviated the harmful effects induced by a subsequent high-dose irradiation.
Resumo:
The ovaries of Kun-Ming strain mice (3 weeks) were irradiated with different doses of C-12(6+) ion or Co-60 gamma-ray. Chromosomal aberrations were analyzed in metaphase II oocytes at 7 weeks after irradiation. The relative biological effectiveness (RBE) of C C-12(6+) ion was calculated with respect to Co-60 gamma-ray for the induction of chromosornal aberrations. The C-12(6+) ion and Co-60 gamma-ray dose-response relationships for chromosomal aberrations were plotted by linear quadratic models. The data showed that there was a dose-related increase in frequency of chromosomal aberrations in all the treated groups compared to controls. The RBE values for C-12(6+) ions relative to (CO)-C-60 gamma-rays were 2.49, 2.29, 1.57, 1.42 or 1.32 for the doses of 0.5, 1.0, 2.07 4.0 or 6.0 Gy, respectively. Moreover, a different distribution of the various types of aberrations has been found for C-12(6+) ion and Co-60 gamma-ray irradiations. The dose-response relationships for C-12(6+) ion and (CO)-C-60 gamma-ray exhibited positive correlations. The results from the present study may be helpful for assessing genetic damage following exposure of immature oocytes to ionizing radiation.
Resumo:
The shell correction is proposed in the improved isospin dependent quantum molecular dynamics (Im-IQMD) model, which plays an important role in heavy-ion fusion reactions near Coulomb barrier. By using the ImIQMD model, the static and dynamical fusion barriers, dynamical barrier distribution in the fusion reactions are analyzed systematically. The fusion and capture excitation functions for a series of reaction systems are calculated and compared with experimental data. It is found that the fusion cross sections for neutron-rich systems increase obviously, and the strong shell effects of two colliding nuclei result in a decrease of the fusion cross sections at the sub-barrier energies. The lowering of the dynamical fusion barriers favors the enhancement of the sub-barrier fusion cross sections, which is related to the nucleon transfer and the neck formation in the fusion reactions.