126 resultados para Perfect
Resumo:
A metal ions (Ag, Bi, V, Mo) modified sol-gel method was used to prepare a mesoporous Ag0.01Bi0.85V0.54Mo0.45O4 catalytic membrane which was used in the selective oxidation of propane to acrolein. By optimizing the preparation parameters, a thin and perfect catalytically active membrane was successfully prepared. SEM results showed that the membrane thickness is similar to5 mum. XRD results revealed that Ag0.01Bi0.85V0.54Mo0.45O4 with a Scheelite structure, which is catalytically active for the selective oxidation of propane to acrolein, was formed in the catalytic membrane only when AgBiVMoO concentrations were higher than 40%. Catalytic reaction results demonstrated that the selective oxidation of propane could be controlled to a certain degree, such as to acrolein, in the catalytic membrane reactor (CMR) compared to the fixed bed reactor (FBR). For example, a selectivity of 54.85% for acrolein in the liquid phase was obtained in the CMR, while only 8.31% was achieved in the FBR. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
研究黄土高原主要农田土壤重金属Cd的形态与生物有效性的关系,为评价本区土壤重金属Cd污染程度及其生物有效性提供一定的理论与数据依据。【方法】以黄土高原自北向南采集的12个0~20 cm耕层土壤为供试土样,通过室内分析和盆栽试验,研究了黄土高原石灰性土壤中不同形态Cd的分布特征及其生物有效性。【结果】黄土高原农田土壤Cd各形态总体分布特征为:有机结合态Cd、铁锰氧化物结合态Cd>碳酸盐结合态Cd>交换态Cd>残渣态Cd,自北向南各形态Cd含量均呈不同程度的增加趋势。各土壤类型间铁锰氧化物结合态Cd及碳酸盐结合态Cd平均含量均表现为:干润砂质新成土<黄土正常新成土<简育干润均腐土<土垫旱耕人为土,自北向南依次增加。碳酸盐结合态Cd和全Cd含量主要受到全氮、有效磷和砂粒含量的影响,且全氮和有效磷含量对其的影响为正效应。铁锰氧化物结合态Cd含量主要受全氮、有效磷、砂粒和粉砂粒含量的影响,且全氮、有效磷和粉砂粒含量对其的影响为正效应。土壤中各形态Cd含量与有机质、C/N、pH、CaCO3、粘粒含量的相关性均不显著,其中与C/N、pH、粘粒含量呈负相关。Cd在小麦茎叶层的含量小于根系;而作物不同部位Cd累积量表现...
Resumo:
Dembowski-Ostrom型完全非线性函数是目前最主要的完全非线性函数类,已发现的完全非线性函数中只有一种不属于Dembowski-Ostrom型.为此,该文首先给出Dembowski-Ostrom型完全非线性函数的定义,将已有的线性码构造推广到这一类型函数上.进而给出此类函数构造的线性码的码字与有限域上非退化二次型之间的关系,并得到相应二次型的原像分布的一些性质.通过有限域上的二次型以及指数和理论,用统一的方法完全确定了基于所有Dembowski-Ostrom型完全非线性函数构造的两类线性码的权分布.
Resumo:
A simple hydrothermal method has been developed to synthesize monodisperse beta-NaLuF4 microplates in a large scale. The microcrystals have a perfect hexagonal shape with a diameter of about 5.2 mu m and a thickness of 300 nm. Trisodium citrate (Cit(3-)), which is introduced into the reaction mixture and acts as the chelating agent and shape modifier, plays a key role in fine-tuning the microstructures. The dominant adsorption of Cit(3-) onto the {0001} facets lowers the surface energy of these facets.
Resumo:
Uniform Fe3O4 octahedral microcrystals with perfect appearance have been successfully synthesized by a Triton X100-assisted polyol process. During the polyols process for the preparation of Fe3O4 octahedra. the introduction of Triton X100 decreases significantly the needed concentration of NaOH. The results show that Fe3O4 octahedra are composed of eight triangular sheets, which are equilateral triangles. The edge size of Fe3O4 octahedron is about 4 mu m. The magnetic properties of Fe3O4 octahedral particles were evaluated on a SQUID magnetometer at room temperature.
Resumo:
A new kind of polyfluorene copolymers, poly(2,7-(9,9-dioctyl-fluorene)-alt-5,5 -(4',7'-di-2-thienyl-2',1',3',-benzothiadiazole) (PFDTBT), was prepared. The introduction of ZnO nanoparticles with perfect wurtzite crystal character into PFDTBT makes the resulted single-layer photovoltaic device to perform a significant photovoltaic response. Among the tested devices, the best performance is observed for that containing 60 wt% of ZnO nanoparticles, which has a photocurrent density of 1.17 mu A/cm(2), an open circuit voltage of 0.81 V. a fill factor of 0.09 and a power conversion efficiency of 0.009%. The results show that the polyfluorene derivatives/ZnO nanoparticles hybrid composites are excellent fluorescence and photovoltaic materials. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A new kind of polyfluorene copolymers, poly(2,7-(9,9-dioctyl-fluorene)-alt-5,5 -(4',7'-di-2-thienyl-2',1',3',-benzothiadiazole) (PFDTBT), was prepared. The introduction of ZnO nanoparticles with perfect wurtzite crystal character into PFDTBT makes the resulted single-layer photovoltaic device to perform a significant photovoltaic response. Among the tested devices, the best performance is observed for that containing 60 wt% of ZnO nanoparticles, which has a photocurrent density of 1.17 mu A/cm(2), an open circuit voltage of 0.81 V. a fill factor of 0.09 and a power conversion efficiency of 0.009%. The results show that the polyfluorene derivatives/ZnO nanoparticles hybrid composites are excellent fluorescence and photovoltaic materials.
Resumo:
Spherical SiO2 particles have been coated with rare earth oxide layers by a Pechini sol-gel process, leading to the formation of core-shell structured SiO2@RE2O3 (RE = rare earth elements) and SiO2@Gd2O3:Ln(3+) (Ln = Eu, Tb, Dy, Sm, Er, Ho) particles. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), photoluminescence (PL), and cathodoluminescence spectra as well as lifetimes were used to characterize the resulting SiO2@RE2O3 (RE = rare earth elements) and SiO2@Gd2O3:Ln(3+) (Eu3+, Tb3+, Dy3+, Sm3+, Er3+, Ho3+) samples. The obtained core-shell phosphors have perfect spherical shape with narrow size distribution (average size ca. 380 nm), smooth surface and non-agglomeration. The thickness of shells could be easily controlled by changing the number of deposition cycles (40 nm for two deposition cycles).
Resumo:
Y2O3: Eu3+ phosphor layers were deposited on monodisperse SiO2 particles with different sizes ( 300, 500, 900, and 1200 nm) via a sol-gel process, resulting in the formation of Y2O3: Eu3+@SiO2 core-shell particles. X-ray diffraction ( XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy ( TEM), time-resolved photoluminescence ( PL) spectra, and lifetimes were employed to characterize the Y2O3: Eu3+@SiO2 core-shell samples. The results of XRD indicated that the Y2O3: Eu3+ layers began to crystallize on the silica surfaces at 600 degrees C and the crystallinity increased with the elevation of annealing temperature until 900 degrees C. The obtained core-shell particles have perfect spherical shape with narrow size distribution and non-agglomeration. The thickness of the shells could be easily controlled by changing the number of deposition cycles ( 60 nm for three deposition cycles). Under the excitation of ultraviolet ( 250 nm), the Eu3+ ion mainly shows its characteristic red ( 611 nm, D-5(0)-F-7(2)) emissions in the core-shell particles from Y2O3: Eu3+ shells.
Resumo:
Uniform MF/YVO4:Ln(3+) (Ln = Eu, Dy, and Sm) composite microspheres have been prepared via a simple and economical wet-chemical route at ambient pressure and low temperature. Monodisperse micrometer-sized melamine formaldehyde (MF) colloidal particles were first fabricated by a condensation process of melamine with formaldehyde. Subsequently, well-dispersed YVO4 nanoparticles were successfully grown onto the MF microspheres to form core-shell structured composite particles in aqueous Solution. The as-obtained composite microspheres with perfect spherical shape are uniform in size and distribution, and the thickness and roughness of the YVO4 shells on MF cores could be tuned by varying the reaction temperature. The MF/YVO4:Ln(3+) composite phosphors show strong light emissions with different colors coming from different activator ions under ultraviolet excitation, which might find potential applications in fields such as light phosphor powders and advanced flat panel displays.
Resumo:
Herein we report a simple electrochemical route for the controlled synthesis of a Cu2O microcrystal from perfect octahedra to monodisperse colloid spheres via control of the electrodeposition potential without the introduction of any template or surfactant. Perfect Cu2O octahedra and monodisperse colloid spheres have been obtained in high yield (similar to 100%).
Resumo:
The hybridization of immobilized oligonucleotides probe strands with solution phase targets is the underlying principle of microarraybased techniques for the analysis of DNA variation. To study the kinetics of DNA/DNA hybridization, target DNA is often prior labeled with markers. A label-free method of electrochemical impedance spectra (EIS) for study the hybridization in process was reported. The Langmuir model was used to determine the association rate constant (K-on), the dissociation rate constant (K-off) and the affinity rate constant (K-A), for perfect matched DNA hybridization. The results show that, EIS is a successful technique possessing high effectivity and sensitivity to study DNA/DNA hybridization kinetics. This work can provide another view on EIS for the studying of DNA/DNA hybridization.
Resumo:
LaF3 : Eu3+ (5.0 mol-% EU3+) nanodisks with perfect crystallinity were successfully synthesized by a simple method. The synthesis was carried out in an aqueous solution at room temperature without the use of templates or organic additives, The mechanism of formation of the nanodisks was explored, and the fluoride source (KBF4) is believed to play a key role in controlling the morphology of the final product. Furthermore, the size of the disk can be simply moderated by varying the concentration of the initial reactants. The room-temperature photoluminescence of LaF3 : Eu3+ with different morphologies and sizes were also investigated, and the results indicate that the emission intensity of the product is strongly affected by their size, shape, and other factors.
Resumo:
Ring- and rod-shaped P4VP-b-PS-b-P4VP ( PS, polystyrene; P4VP, poly( 4-vinylpyridine)) triblock copolymer aggregates are used as templates to synthesize ZnS nanocrystals. Herein, PVP serves as both a stabilizing agent and a structure- directing agent. The resulting ZnS nanocrystals could be aligned along the corona of the copolymer aggregates in near-perfect structures through control of both the molar ratio of Zn2+ to P4VP and the reaction time. The diameter of the as-synthesized ZnS layer on the surface of polymer template is approximate 2 - 3 nm. High-resolution transmission electron microscopy images reveal that the ZnS particles are single crystal in a zinc blende structure. This method provides a simple, reproducible route at room temperature to prepare assembled hybrid polymer - semiconductor nanocrystal nanocomposites.
Resumo:
A sol-gel technique was used to prepare Gd2Ti2O7:Eu3+-coated submicron silica spheres (SiO2@Gd2Ti2O7:Eu3+). The resulted SiO2@Gd2Ti2O7:Eu3+ core-shell particles were characterized by x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), energy-dispersive x-ray spectra (EDS), transmission electron microscopy (TEM), photoluminescence (PL) spectra, as well as kinetic decays. The XRD results demonstrate that the Gd2Ti2O7:Eu3+ layers begin to crystallize on the SiO2 spheres after annealing at 800 degrees C and the crystallinity increases with raising the annealing temperature. The obtained core-shell phosphors have perfect spherical shape with narrow size distribution (average size similar to 620 nm), non-agglomeration, and smooth surface. The thickness of the Gd2Ti2O7:Eu3+ shells on the SiO2 cores could be easily tailored by varying the number of deposition cycles (60 nm for four deposition cycles). Under the irradiation of 310 nm ultraviolet, the SiO2@GdTi2O7:Eu3+ samples show strong emission of Eu3+.